如何用matplotlib绘制水平和波浪形堆叠图
Admin 2022-09-07 群英技术资讯 1034 次浏览
今天小编跟大家讲解下有关“如何用matplotlib绘制水平和波浪形堆叠图”的内容 ,相信小伙伴们对这个话题应该有所关注吧,小编也收集到了相关资料,希望小伙伴们看了有所帮助。堆叠图其实就是柱状图的一种特殊形式
from matplotlib import pyplot as plt
plt.style.use('seaborn')
plt.figure(figsize=(15,9))
plt.rcParams.update({'font.family': "Microsoft YaHei"})
plt.title("中国票房2021TOP9")
plt.bar(cnbodfgbsort.index,cnbodfgbsort.PERSONS)
plt.bar(cnbodfgbsort.index,cnbodfgbsort.PRICE)
plt.bar(cnbodfgbsort.index,cnbodfgbsort.points)
plt.show()
堆叠图效果

可以看到有部分蓝色的数据被遮挡了,如果我们想全部展现,可以:
index_x=np.arange(len(cnbodfgbsort.index)) index_x w=0.15
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(15,9))
plt.rcParams.update({'font.family': "Microsoft YaHei"})
plt.title("中国票房2021TOP9")
plt.bar(index_x,cnbodfgbsort.PERSONS,width=w)
plt.bar(index_x+w,cnbodfgbsort.PRICE,width=w)
plt.bar(index_x+2*w,cnbodfgbsort.points,width=w)
plt.show()

可以看到Excel的数据源当中BO与PRICE和PERSONS的数字相差过大,如果做堆叠图的话,BO会将其他的都进行覆盖,无法显示好的效果:

因为数据相差实在太大,我们可以直接让BO除以1000:
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(15,9))
plt.rcParams.update({'font.family': "Microsoft YaHei"})
plt.title("中国票房2021TOP9")
plt.bar(cnbodfgbsort.index,cnbodfgbsort.PERSONS)
plt.bar(cnbodfgbsort.index,cnbodfgbsort.PRICE)
plt.bar(cnbodfgbsort.index,cnbodfgbsort.BO/1000)
plt.bar(cnbodfgbsort.index,cnbodfgbsort.points)
plt.show()

from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(15,9))
plt.rcParams.update({'font.family': "Microsoft YaHei"})
plt.title("中国票房2021TOP9")
plt.bar(index_x-w,cnbodfgbsort.BO/1000,width=w) # 直接让BO除以1000
plt.bar(index_x,cnbodfgbsort.PERSONS,width=w)
plt.bar(index_x+w,cnbodfgbsort.PRICE,width=w)
plt.bar(index_x+2*w,cnbodfgbsort.points,width=w)
plt.show()

labels=['战争','爱情','动画','动作','惊悚','剧情'] colors=['tan','violet','turquoise','tomato','teal','steelblue'] plt.stackplot(cnbodfgbsort.index,cnbodfgbsort.PRICE,cnbodfgbsort.PERSONS,cnbodfgbsort.points,labels=labels,colors=colors)

labels=['战争','爱情','动画','动作','惊悚','剧情'] colors=['tan','violet','turquoise','tomato','teal','steelblue'] plt.stackplot(cnbodfgbsort.index,cnbodfgbsort.PRICE,cnbodfgbsort.BO/900,cnbodfgbsort.PERSONS,cnbodfgbsort.points,labels=labels,colors=colors)

plt.legend()
labels=['票房','票价','人次','评分'] colors=['tan','violet','turquoise','tomato','teal','steelblue'] plt.stackplot(cnbodfgbsort.index,cnbodfgbsort.PRICE,cnbodfgbsort.BO/900,cnbodfgbsort.PERSONS,cnbodfgbsort.points,labels=labels,colors=colors) plt.legend()
!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
python如何实现单因素分析线性拟合及地理编码?下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家,下面我们一起来了解看看吧。
大家好,本篇文章主要讲的是python实现简易猜数小游戏,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
今天带大家学习怎么利用Python绘制柱状图,条形图,文中有非常详细的代码示例,对正在学习python的小伙伴们很有帮助,需要的朋友可以参考下
这篇文章主要介绍了在Django中创建自己的自定义用户模型,创建自己的自定义用户模型至关重要。将来,如果要对模型进行一些更改,则可以轻松进行这些更改。不然我们可能必须对模型进行一些更改,而且代码的某些部分也将被更改
这篇文章主要介绍了Python基础学习函数+模块+类,这是基础学习的第三篇内容,小编已把前两篇链接放在下面,需要学习的同学可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008