Pytorch识别LeNet模型怎样实现的
Admin 2022-09-06 群英技术资讯 836 次浏览
LeNet网络过卷积层时候保持分辨率不变,过池化层时候分辨率变小。实现如下
from PIL import Image import cv2 import matplotlib.pyplot as plt import torchvision from torchvision import transforms import torch from torch.utils.data import DataLoader import torch.nn as nn import numpy as np import tqdm as tqdm class LeNet(nn.Module): def __init__(self) -> None: super().__init__() self.sequential = nn.Sequential(nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(), nn.AvgPool2d(kernel_size=2,stride=2), nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(), nn.AvgPool2d(kernel_size=2,stride=2), nn.Flatten(), nn.Linear(16*25,120),nn.Sigmoid(), nn.Linear(120,84),nn.Sigmoid(), nn.Linear(84,10)) def forward(self,x): return self.sequential(x) class MLP(nn.Module): def __init__(self) -> None: super().__init__() self.sequential = nn.Sequential(nn.Flatten(), nn.Linear(28*28,120),nn.Sigmoid(), nn.Linear(120,84),nn.Sigmoid(), nn.Linear(84,10)) def forward(self,x): return self.sequential(x) epochs = 15 batch = 32 lr=0.9 loss = nn.CrossEntropyLoss() model = LeNet() optimizer = torch.optim.SGD(model.parameters(),lr) device = torch.device('cuda') root = r"./" trans_compose = transforms.Compose([transforms.ToTensor(), ]) train_data = torchvision.datasets.MNIST(root,train=True,transform=trans_compose,download=True) test_data = torchvision.datasets.MNIST(root,train=False,transform=trans_compose,download=True) train_loader = DataLoader(train_data,batch_size=batch,shuffle=True) test_loader = DataLoader(test_data,batch_size=batch,shuffle=False) model.to(device) loss.to(device) # model.apply(init_weights) for epoch in range(epochs): train_loss = 0 test_loss = 0 correct_train = 0 correct_test = 0 for index,(x,y) in enumerate(train_loader): x = x.to(device) y = y.to(device) predict = model(x) L = loss(predict,y) optimizer.zero_grad() L.backward() optimizer.step() train_loss = train_loss + L correct_train += (predict.argmax(dim=1)==y).sum() acc_train = correct_train/(batch*len(train_loader)) with torch.no_grad(): for index,(x,y) in enumerate(test_loader): [x,y] = [x.to(device),y.to(device)] predict = model(x) L1 = loss(predict,y) test_loss = test_loss + L1 correct_test += (predict.argmax(dim=1)==y).sum() acc_test = correct_test/(batch*len(test_loader)) print(f'epoch:{epoch},train_loss:{train_loss/batch},test_loss:{test_loss/batch},acc_train:{acc_train},acc_test:{acc_test}')
epoch:12,train_loss:2.235553741455078,test_loss:0.3947642743587494,acc_train:0.9879833459854126,acc_test:0.9851238131523132
epoch:13,train_loss:2.028963804244995,test_loss:0.3220392167568207,acc_train:0.9891499876976013,acc_test:0.9875199794769287
epoch:14,train_loss:1.8020273447036743,test_loss:0.34837451577186584,acc_train:0.9901833534240723,acc_test:0.98702073097229
找了一张图片,将其分割成只含一个数字的图片进行测试
images_np = cv2.imread("/content/R-C.png",cv2.IMREAD_GRAYSCALE) h,w = images_np.shape images_np = np.array(255*torch.ones(h,w))-images_np#图片反色 images = Image.fromarray(images_np) plt.figure(1) plt.imshow(images) test_images = [] for i in range(10): for j in range(16): test_images.append(images_np[h//10*i:h//10+h//10*i,w//16*j:w//16*j+w//16]) sample = test_images[77] sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device) sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28)) predict = model(sample_tensor) output = predict.argmax() print(output) plt.figure(2) plt.imshow(np.array(sample_tensor.squeeze().to('cpu')))
此时预测结果为4,预测正确。从这段代码中可以看到有一个反色的步骤,若不反色,结果会受到影响,如下图所示,预测为0,错误。
模型用于输入的图片是单通道的黑白图片,这里由于可视化出现了黄色,但实际上是黑白色,反色操作说明了数据的预处理十分的重要,很多数据如果是不清理过是无法直接用于推理的。
将所有用来泛化性测试的图片进行准确率测试:
correct = 0 i = 0 cnt = 1 for sample in test_images: sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device) sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28)) predict = model(sample_tensor) output = predict.argmax() if(output==i): correct+=1 if(cnt%16==0): i+=1 cnt+=1 acc_g = correct/len(test_images) print(f'acc_g:{acc_g}')
如果不反色,acc_g=0.15
acc_g:0.50625
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
9 月 10 日,张勇如期和蔡崇信完成阿里巴巴控股集团董事会主席的交接。但出人意料的是,他没有像 6 月说的 “专职担任阿里云智能集团董事长兼 CEO”,而是继续退出,以 “功勋阿里人” 的身份从阿里集团退休。
这篇文章主要介绍了利用Python绘制多种风玫瑰图,风玫瑰是由气象学家用于给出如何风速和风向在特定位置通常分布的简明视图的图形工具,下文绘制实现详情,需要的小伙伴可以参考一下
相信不少朋友在刷朋友圈时,都会刷到下图所示的九宫格图片,感觉很酷炫的样子,那么这是怎么样做的呢?下面就给就大家分享一下Python生成这样一个九宫格图片的代码。
先选中要注释的段落,然后按下“ctrl+/”,即可实现多行代码的注释。||跟注释单行一样在每一行前面输入“shift+#”。||输入‘‘‘ ’’’或者“““ ”””,将要注释的代码插在中间,也可实现注释多行代码的效果。
图像标注在计算机视觉中很重要,计算机视觉是一种技术,它允许计算机从数字图像或视频中获得高水平的理解力,并以人类的方式观察和解释视觉信息,本文将重点讨论在OpenCV的帮助下创建这些注释,感兴趣的朋友一起看看吧
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008