BN和dropout是什么,使用有哪些不同
Admin 2022-09-05 群英技术资讯 664 次浏览
BN在训练时是在每个batch上计算均值和方差来进行归一化,每个batch的样本量都不大,所以每次计算出来的均值和方差就存在差异。预测时一般传入一个样本,所以不存在归一化,其次哪怕是预测一个batch,但batch计算出来的均值和方差是偏离总体样本的,所以通常是通过滑动平均结合训练时所有batch的均值和方差来得到一个总体均值和方差。
以tensorflow代码实现为例:
def bn_layer(self, inputs, training, name='bn', moving_decay=0.9, eps=1e-5): # 获取输入维度并判断是否匹配卷积层(4)或者全连接层(2) shape = inputs.shape param_shape = shape[-1] with tf.variable_scope(name): # 声明BN中唯一需要学习的两个参数,y=gamma*x+beta gamma = tf.get_variable('gamma', param_shape, initializer=tf.constant_initializer(1)) beta = tf.get_variable('beat', param_shape, initializer=tf.constant_initializer(0)) # 计算当前整个batch的均值与方差 axes = list(range(len(shape)-1)) batch_mean, batch_var = tf.nn.moments(inputs , axes, name='moments') # 采用滑动平均更新均值与方差 ema = tf.train.ExponentialMovingAverage(moving_decay, name="ema") def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) # 训练时,更新均值与方差,测试时使用之前最后一次保存的均值与方差 mean, var = tf.cond(tf.equal(training,True), mean_var_with_update, lambda:(ema.average(batch_mean), ema.average(batch_var))) # 最后执行batch normalization return tf.nn.batch_normalization(inputs ,mean, var, beta, gamma, eps)
training参数可以通过tf.placeholder传入,这样就可以控制训练和预测时training的值。
self.training = tf.placeholder(tf.bool, name="training")
Dropout在训练时会随机丢弃一些神经元,这样会导致输出的结果变小。而预测时往往关闭dropout,保证预测结果的一致性(不关闭dropout可能同一个输入会得到不同的输出,不过输出会服从某一分布。另外有些情况下可以不关闭dropout,比如文本生成下,不关闭会增大输出的多样性)。
为了对齐Dropout训练和预测的结果,通常有两种做法,假设dropout rate = 0.2。一种是训练时不做处理,预测时输出乘以(1 - dropout rate)。另一种是训练时留下的神经元除以(1 - dropout rate),预测时不做处理。以tensorflow为例。
x = tf.nn.dropout(x, self.keep_prob)
self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")
tf.nn.dropout就是采用了第二种做法,训练时除以(1 - dropout rate),源码如下:
binary_tensor = math_ops.floor(random_tensor) ret = math_ops.div(x, keep_prob) * binary_tensor if not context.executing_eagerly(): ret.set_shape(x.get_shape()) return ret
binary_tensor就是一个mask tensor,即里面的值由0或1组成。keep_prob = 1 - dropout rate。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
如何理解模块?模块可以看成一个完整的功能非常强的大代码体 使用了模块就相当于你也有这个功能了;使用模块编程就相当于站在巨人的肩膀上(智能语音 人工智能机器学习......)
字典是Python必用且常用的数据结构,本文主要为大家梳理了一下常用的字典操作:初始化、合并字典、字典转Pandas等,需要的可以参考一下
这篇文章主要介绍了pytorch实现简单全连接层的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
python匿名函数从字面意思来看,就是没有名字的函数。python使用匿名函数局势可以减少重复代码和模块化代码。因此本文给大家分享关于python匿名函数的用法,下面有具体的实例。
文本给大家分享的是关于Python中property属性的使用。下文有property属性使用的示例以及要注意的事项的介绍,具有一定的参加借鉴价值,需要的朋友可以参考学习。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008