opencv调用摄像头的实现思路和代码是什么
Admin 2022-09-03 群英技术资讯 799 次浏览
这篇文章给大家介绍了“opencv调用摄像头的实现思路和代码是什么”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。好多人都想了解一下如何对摄像头进行调用,然后进行目标检测,于是我做了这个小BLOG。
opencv-python==4.1.2.30
Pillow==6.2.1
numpy==1.17.4
这些都是通用的库,版本不同问题应该也不大。
利用opencv调用摄像头,读取每一帧传入目标检测网络检测,将检测结果呈现。
由于本文所用的检测格式为RGB格式,CV2读取的时候会使用BGR格式,因此在检测的时候要利用cv2.cvtColor进行转换。
以Retinanet为例:
from keras.layers import Input
from retinanet import Retinanet
from PIL import Image
import numpy as np
import cv2
retinanet = Retinanet()
# 调用摄像头
capture=cv2.VideoCapture(0)
while(True):
# 读取某一帧
ref,frame=capture.read()
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
# 转变成Image
frame = Image.fromarray(np.uint8(frame))
# 进行检测
frame = np.array(retinanet.detect_image(frame))
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)
cv2.imshow("video",frame)
c= cv2.waitKey(30) & 0xff
if c==27:
capture.release()
break
retinanet.close_session()
很多小伙伴说到想要获取FPS,于是给所有的目标检测网络加上了FPS的功能,需要的小伙伴请重新下载。
FPS简单来理解就是图像的刷新频率,也就是每秒多少帧。
假设目标检测网络处理1帧要0.02s。
此时FPS就是50。
该代码以ssd为例。
#-------------------------------------#
# 调用摄像头检测
#-------------------------------------#
from ssd import SSD
from PIL import Image
import numpy as np
import cv2
import time
ssd = SSD()
# 调用摄像头
capture=cv2.VideoCapture(0) # capture=cv2.VideoCapture("1.mp4")
fps = 0.0
while(True):
t1 = time.time()
# 读取某一帧
ref,frame=capture.read()
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
# 转变成Image
frame = Image.fromarray(np.uint8(frame))
# 进行检测
frame = np.array(ssd.detect_image(frame))
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)
fps = ( fps + (1./(time.time()-t1)) ) / 2
print("fps= %.2f"%(fps))
frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("video",frame)
c= cv2.waitKey(30) & 0xff
if c==27:
capture.release()
break
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Pytorch的数据加载一般是用torch.utils.data.Dataset与torch.utils.data.Dataloader两个类联合进行。我们需要继承Dataset来定义自己的数据集类,然后在训练时用Dataloader加载自定义的数据集类。
本文主要介绍了Python datacompy 找出两个DataFrames不同的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧<BR>
本文主要介绍了Django实现视频播放的具体示例,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下<BR>
在本篇文章里小编给大家整理了关于Python的缺点和劣势总结,有兴趣的朋友们可以学习下。
既然在Pathlib库中提到了glob()函数,那么我们就专门用一篇内容讲解文件名的匹配。其实我们有专门的一个文件名匹配库就叫:glob。
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008