用numpy.mean怎样计算矩阵均值,代码是什么
Admin 2022-09-03 群英技术资讯 724 次浏览
这篇文章给大家介绍了“用numpy.mean怎样计算矩阵均值,代码是什么”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。计算矩阵的均值
>>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) # 将上面二维矩阵的每个元素相加除以元素个数(求平均数) 2.5 >>> np.mean(a, axis=0) # axis=0,计算每一列的均值 array([ 2., 3.]) >>> np.mean(a, axis=1) # 计算每一行的均值 array([ 1.5, 3.5])
官方手册
现将mean的常用方法总结如下:
函数体:
numpy.mean(a, axis=None, dtype=None, out=None, keepdims= < class ‘numpy._globals._NoValue'>)[source]
功能:
参数:
①a:必须是数组。
②axis:默认条件下是flatten的array,可以指定相应的轴。
如果是二维矩阵,axis=0返回纵轴的平均值,axis=1返回横轴的平均值。
例子如下:
>>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) 2.5 >>> np.mean(a, axis=0) array([ 2., 3.]) >>> np.mean(a, axis=1) array([ 1.5, 3.5])
返回值:
在out=None的情况下,返回的就是你要的平均值呗~
否则,返回一个对平均值的引用。
注意(关于精度):
算术平均值是沿轴的元素总和除以元素的数量。既然是除法,就涉及到一个精确度的问题。
对于浮点输入,平均值的计算使用与输入相同的精度计算,这可能会导致结果不准确,特别是对于float32来说。为了缓解这个问题,我们可以使用dtype关键字指定更高精度的累加器。
具体看下面这个例程:
>>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.mean(a) 0.54999924
>>> np.mean(a, dtype=np.float64) 0.55000000074505806
如果想要返回标准差,可以调用标准差函数
std = sqrt(平均值(abs(x-x.mean())** 2))
>>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.1180339887498949 >>> np.std(a, axis=0) array([ 1., 1.]) >>> np.std(a, axis=1) array([ 0.5, 0.5])
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python判定文件目录是否存在及创建多层目录,文章通过os模块、try语句、pathlib模块善终模块展开详细的内容,感兴趣的朋友可以参考一下
PyQt提供了一个设计良好的窗口控件集合,具有更方便的操作性。学过VB的同学会知道,相比与VB的使用,在界面设计上元素更丰富,这篇文章主要介绍了基于PyQt5完成的图转文功能,需要的朋友可以参考下
python读写文件的api都很简单,一不留神就容易踩”坑“。笔者记录一次踩坑历程,并且给了一些总结,希望到大家在使用python的过程之中,能
内容介绍写在前面创建一个文档先实现第一步,写入一个标题添加文字段落列表的添加图片的添加表格添加相关样式设置页眉和页脚写在前面python-docx不支持doc文档,一定要注意该点,如果使用do
今天带大家学习怎么利用Python绘制柱状图,条形图,文中有非常详细的代码示例,对正在学习python的小伙伴们很有帮助,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008