用numpy.mean怎样计算矩阵均值,代码是什么
Admin 2022-09-03 群英技术资讯 807 次浏览
这篇文章给大家介绍了“用numpy.mean怎样计算矩阵均值,代码是什么”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。计算矩阵的均值
>>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) # 将上面二维矩阵的每个元素相加除以元素个数(求平均数) 2.5 >>> np.mean(a, axis=0) # axis=0,计算每一列的均值 array([ 2., 3.]) >>> np.mean(a, axis=1) # 计算每一行的均值 array([ 1.5, 3.5])
官方手册
现将mean的常用方法总结如下:
函数体:
numpy.mean(a, axis=None, dtype=None, out=None, keepdims= < class ‘numpy._globals._NoValue'>)[source]
功能:
参数:
①a:必须是数组。
②axis:默认条件下是flatten的array,可以指定相应的轴。
如果是二维矩阵,axis=0返回纵轴的平均值,axis=1返回横轴的平均值。
例子如下:
>>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) 2.5 >>> np.mean(a, axis=0) array([ 2., 3.]) >>> np.mean(a, axis=1) array([ 1.5, 3.5])
返回值:
在out=None的情况下,返回的就是你要的平均值呗~
否则,返回一个对平均值的引用。
注意(关于精度):
算术平均值是沿轴的元素总和除以元素的数量。既然是除法,就涉及到一个精确度的问题。
对于浮点输入,平均值的计算使用与输入相同的精度计算,这可能会导致结果不准确,特别是对于float32来说。为了缓解这个问题,我们可以使用dtype关键字指定更高精度的累加器。
具体看下面这个例程:
>>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.mean(a) 0.54999924
>>> np.mean(a, dtype=np.float64) 0.55000000074505806
如果想要返回标准差,可以调用标准差函数
std = sqrt(平均值(abs(x-x.mean())** 2))
>>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.1180339887498949 >>> np.std(a, axis=0) array([ 1., 1.]) >>> np.std(a, axis=1) array([ 0.5, 0.5])
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python 中的反转字符串reversed(),切片 ,以相反的顺序反转和处理字符串可能是编程中的一项常见任务。Python 提供了一组工具和技术,可以帮助我们快速有效地执行字符串反转,下面来看看具体内容吧
python执行系统命令的方法有哪些?一些新手对于python执行系统命令不是很了解,所以这篇文章就给大家介绍一下python执行系统命令的常见4种方法,感兴趣的朋友可以参考。
python中字典如何排序?方法一,key使用lambda匿名函数取value进行排序;方法二,使用operator的itemgetter进行排序
Python中有三个去除头尾字符、空白符的函数,它们依次为:strip: 用来去除头尾字符、空白符(包括 n、 r、 t、& 39; & 39;,即:换行、回
在开始学习前,需要准备好相应的环境配置。这里我选择了anaconda,创建了一个专门的虚拟环境来学习机器学习。这里关于anaconda的安装等就不赘述了,没有难度。
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008