详解Tensorboard可视化实现的例子是怎样的
Admin 2022-09-03 群英技术资讯 753 次浏览
关于“详解Tensorboard可视化实现的例子是怎样的”的知识有一些人不是很理解,对此小编给大家总结了相关内容,具有一定的参考借鉴价值,而且易于学习与理解,希望能对大家有所帮助,有这个方面学习需要的朋友就继续往下看吧。该类在存放在keras.callbacks模块中。拥有许多参数,主要的参数如下:
1、log_dir: 用来保存Tensorboard的日志文件等内容的位置
2、histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率。
3、write_graph: 是否在 TensorBoard 中可视化图像。
4、write_grads: 是否在 TensorBoard 中可视化梯度值直方图。
5、batch_size: 用以直方图计算的传入神经元网络输入批的大小。
6、write_images: 是否在 TensorBoard中将模型权重以图片可视化。
7、update_freq: 常用的三个值为’batch’ 、 ‘epoch’ 或 整数。当使用 ‘batch’ 时,在每个 batch 之后将损失和评估值写入到 TensorBoard 中。 ‘epoch’ 类似。如果使用整数,会在每一定个样本之后将损失和评估值写入到 TensorBoard 中。
默认值如下:
log_dir='./logs', # 默认保存在当前文件夹下的logs文件夹之下 histogram_freq=0, batch_size=32, write_graph=True, #默认是True,默认是显示graph的。 write_grads=False, write_images=False, update_freq='epoch'
以手写体为例子,我们打开histogram_freq和write_grads,也就是在Tensorboard中保存权值直方图和梯度直方图。
打开CMD,利用tensorboard --logdir=logs生成tensorboard观测网页。




import numpy as np
from keras.layers import Input, Dense, Dropout, Activation,Conv2D,MaxPool2D,Flatten
from keras.datasets import mnist
from keras.models import Model
from keras.utils import to_categorical
from keras.callbacks import TensorBoard
if __name__=="__main__":
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train=np.expand_dims(x_train,axis=-1)
x_test=np.expand_dims(x_test,axis=-1)
y_train=to_categorical(y_train,num_classes=10)
y_test=to_categorical(y_test,num_classes=10)
batch_size=128
epochs=10
inputs = Input([28,28,1])
x = Conv2D(32, (5,5), activation='relu')(inputs)
x = Conv2D(64, (5,5), activation='relu')(x)
x = MaxPool2D(pool_size=(2,2))(x)
x = Flatten()(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(10, activation='softmax')(x)
model = Model(inputs,x)
model.compile(loss='categorical_crossentropy', optimizer="adam",metrics=['acc'])
Tensorboard= TensorBoard(log_dir="./model", histogram_freq=1,write_grads=True)
history=model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, shuffle=True, validation_split=0.2,callbacks=[Tensorboard])
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文主要介绍了Python绘制多因子柱状图的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
python把小写字母变成大写字母的方法:可以利用upper()方法来实现。upper()方法可以将字符串中的小写字母转换为大写字母,并返回转换后的字符串,语法为:【str.upper()】。
python中dlib库有什么用处?dlib库是一个机器学习的开源库,包含了机器学习的很多算法,使用起来很方便,直接包含头文件即可,并且不依赖于其他库(自带图像编解码库源码)。简单的了解完dlib库的用处,下面我们就来看看如何安装dlib库。
对于Python新手来说,理解python内存分配机制是很有必要的。本文就给大家分享一下实例帮助大家更好的理解python内存分配机制,下面就跟随小编一起来看看吧。
python模块是什么?如何导入和使用?模块是python很基础的一个内容,但是对新手来说,可能还不是很了解,对此这篇文章就主要给大家分享什么是模块,怎样导入模块等等,感兴趣的朋友就继续往下看吧。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008