Python中heapq堆排算法的实现是什么样的
Admin 2022-09-01 群英技术资讯 715 次浏览
这篇文章主要介绍“Python中heapq堆排算法的实现是什么样的”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中heapq堆排算法的实现是什么样的”文章能帮助大家解决问题。heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构
import heapq # 第一种 """ 函数定义: heapq.heappush(heap, item) - Push the value item onto the heap, maintaining the heap invariant. heapq.heappop(heap) - Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0]. """ nums = [2, 3, 5, 1, 54, 23, 132] heap = [] for num in nums: heapq.heappush(heap, num) # 加入堆 print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0] print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果 # out: [1, 2, 3, 5, 23, 54, 132] # 第二种 nums = [2, 3, 5, 1, 54, 23, 132] heapq.heapify(nums) print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果 # out: [1, 2, 3, 5, 23, 54, 132]
heapq 模块还有一个heapq.merge(*iterables) 方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。
类似于sorted(itertools.chain(*iterables)),但返回的是可迭代的。
""" 函数定义: heapq.merge(*iterables) - Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an iterator over the sorted values. - Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest). """ import heapq num1 = [32, 3, 5, 34, 54, 23, 132] num2 = [23, 2, 12, 656, 324, 23, 54] num1 = sorted(num1) num2 = sorted(num2) res = heapq.merge(num1, num2) print(list(res))
堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。
import heapq nums = [2, 43, 45, 23, 12] heapq.heapify(nums) print(heapq.heappop(nums)) # out: 2 # 如果需要所有堆排序后的元素 result = [heapq.heappop(nums) for _ in range(len(nums))] print(result) # out: [12, 23, 43, 45]
如果需要删除堆中最小元素并加入一个元素,可以使用heapq.heaprepalce() 函数
import heapq nums = [1, 2, 4, 5, 3] heapq.heapify(nums) heapq.heapreplace(nums, 23) print([heapq.heappop(nums) for _ in range(len(nums))]) # out: [2, 3, 4, 5, 23]
如果需要获取堆中最大或最小的范围值,则可以使用heapq.nlargest() 或heapq.nsmallest() 函数
""" 函数定义: heapq.nlargest(n, iterable[, key])¶ - Return a list with the n largest elements from the dataset defined by iterable. - key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower - Equivalent to: sorted(iterable, key=key, reverse=True)[:n] """ import heapq nums = [1, 3, 4, 5, 2] print(heapq.nlargest(3, nums)) print(heapq.nsmallest(3, nums)) """ 输出: [5, 4, 3] [1, 2, 3] """
这两个函数还接受一个key参数,用于dict或其他数据结构类型使用
import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)
"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""
实现heap堆排序算法:
>>> def heapsort(iterable): ... h = [] ... for value in iterable: ... heappush(h, value) ... return [heappop(h) for i in range(len(h))] ... >>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0]) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
该算法和sorted(iterable) 类似,但是它是不稳定的。
堆的值可以是元组类型,可以实现对带权值的元素进行排序。
>>> h = [] >>> heappush(h, (5, 'write code')) >>> heappush(h, (7, 'release product')) >>> heappush(h, (1, 'write spec')) >>> heappush(h, (3, 'create tests')) >>> heappop(h) (1, 'write spec')
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python的捕捉异常,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
本文给大家分享python学习的基础知识,也就是python生成器和文件系统的知识,那么python生成器是什么?如何使用?文件系统如何操作?下面我们就来详细的了解看看。
二分法检索介绍二分法检索(binary search)又称折半检索,二分法检索的基本思想是设字典中的元素从小到大有序地存放在数组(array)中,
如果pytorch在进行model.cuda()操作需要花费的时间很长,长到你怀疑GPU的速度了,那就是不正常的。如果你用的pytorch版本是0.3.0,升级到0.3.1就好了!
python中怎样做代码性能分析?做代码性能分析能够帮我们了解什么原因导致性能变慢,因此大家学习python代码性能分析也是很有必要的。而python就有提供性能分析工具,下面我们就来具体看看。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008