Python多cpu并行编程是怎样,要点有什么
Admin 2022-08-31 群英技术资讯 598 次浏览
pip install pp
#-*- coding: UTF-8 -*- import math, sys, time import pp def IsPrime(n): """返回n是否是素数""" if not isinstance(n, int): raise TypeError("argument passed to is_prime is not of 'int' type") if n < 2: return False if n == 2: return True max = int(math.ceil(math.sqrt(n))) i = 2 while i <= max: if n % i == 0: return False i += 1 return True def SumPrimes(n): for i in xrange(15): sum([x for x in xrange(2,n) if IsPrime(x)]) """计算从2-n之间的所有素数之和""" return sum([x for x in xrange(2,n) if IsPrime(x)]) inputs = (100000, 100100, 100200, 100300, 100400, 100500, 100600, 100700) # start_time = time.time() # for input in inputs: # print SumPrimes(input) # print '单线程执行,总耗时', time.time() - start_time, 's' # # tuple of all parallel python servers to connect with ppservers = () #ppservers = ("10.0.0.1",) if len(sys.argv) > 1: ncpus = int(sys.argv[1]) # Creates jobserver with ncpus workers job_server = pp.Server(ncpus, ppservers=ppservers) else: # Creates jobserver with automatically detected number of workers job_server = pp.Server(ppservers=ppservers) print "pp 可以用的工作核心线程数", job_server.get_ncpus(), "workers" start_time = time.time() jobs = [(input, job_server.submit(SumPrimes,(input,), (IsPrime,), ("math",))) for input in inputs]#submit提交任务 for input, job in jobs: print "Sum of primes below", input, "is", job()# job()获取方法执行结果 print "多线程下执行耗时: ", time.time() - start_time, "s" job_server.print_stats()#输出执行信息
执行结果
pp 可以用的工作核心线程数 4 workers
Sum of primes below 100000 is 454396537
Sum of primes below 100100 is 454996777
Sum of primes below 100200 is 455898156
Sum of primes below 100300 is 456700218
Sum of primes below 100400 is 457603451
Sum of primes below 100500 is 458407033
Sum of primes below 100600 is 459412387
Sum of primes below 100700 is 460217613
多线程下执行耗时: 15.4971420765 s
Job execution statistics:
job count | % of all jobs | job time sum | time per job | job server
8 | 100.00 | 60.9828 | 7.622844 | local
Time elapsed since server creation 15.4972219467
0 active tasks, 4 cores
def submit(self, func, args=(), depfuncs=(), modules=(), callback=None, callbackargs=(), group='default', globals=None): """Submits function to the execution queue func - function to be executed 执行的方法 args - tuple with arguments of the 'func' 方法传入的参数,使用元组 depfuncs - tuple with functions which might be called from 'func' 传入自己写的方法 ,元组 modules - tuple with module names to import 传入 模块 callback - callback function which will be called with argument list equal to callbackargs+(result,) as soon as calculation is done callbackargs - additional arguments for callback function group - job group, is used when wait(group) is called to wait for jobs in a given group to finish globals - dictionary from which all modules, functions and classes will be imported, for instance: globals=globals() """
# 多进程 import multiprocessing as mp def job(q, a, b): print('aaa') q.put(a**1000+b*1000) # 把计算结果放到队列 # 多进程 if __name__ == '__main__': q = mp.Queue() # 一个队列 p1 = mp.Process(target=job, args=(q, 100, 200)) p2 = mp.Process(target=job, args=(q, 100, 200)) p1.start() p1.join() # print(p1.ident) p2.start() p2.join() res = q.get() + q.get() # 读取队列,这里面保存了两次计算得到的结果 print('result:', res)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Pytorch卷积神经网络迁移学习的目标实现代码及好处介绍,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
使用pyplot的subplot()函数可以在规划好的某个区域中绘制单个子图,subplot()函数的语法格式如下,该函数的常用参数含义如下。
这篇文章介绍了Python中的协程(Coroutine)操作模块(greenlet、gevent),文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
有的时候我们写的东西不想让别人看到,会设置密码来加密。在Python中,我们写的字符字符不想被别人看到,保护自己的隐私,会选择加密。本文介绍Python字符串加密的五种方法:url编码、base64、ascii、md5 Unicode转中文。具体代码如下:
这篇文章主要为大家介绍了Python之可迭代对象,迭代器和生成器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008