如何掌握Python内建类型str的使用,有哪些要点
Admin 2022-08-31 群英技术资讯 726 次浏览
今天小编跟大家讲解下有关“如何掌握Python内建类型str的使用,有哪些要点”的内容 ,相信小伙伴们对这个话题应该有所关注吧,小编也收集到了相关资料,希望小伙伴们看了有所帮助。“深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种常用的内建类型。
在介绍常用类型str之前,在上一篇博客:Python源码学习笔记:深入认识Python内建类型——bytes已经为大家介绍了和str息息相关的bytes的源码知识。这篇博客回味大家分析str相关的源码。
计算机存储的基本单位是字节,由8个比特位组成。由于英文只由26个字母加若干符号组成,因此英文字符可以直接用字节来保存。但是其他语言(例如中日韩等),由于字符众多,不得不使用多个字节来进行编码。
随着计算机技术的传播,非拉丁文字符编码技术不断发展,但是仍然存在两个比较大的局限性:
由于编码方式不统一,开发人员就需要在不同编码之间来回转换,不可避免地会出现很多错误。为了解决这类不统一问题,Unicode标准被提出了。Unicode对世界上大部分文字系统进行整理、编码,让计算机可以用统一的方式处理文本。Unicode目前已经收录了超过14万个字符,天然地支持多语言。(Unicode的uni就是“统一”的词根)
Python在3之后,str对象内部改用Unicode表示,因此在源码中成为Unicode对象。使用Unicode表示的好处是:程序核心逻辑统一使用Unicode,只需在输入、输出层进行解码、编码,可最大程度地避免各种编码问题。
图示如下:

问题:由于Unicode收录字符已经超过14万个,每个字符至少需要4个字节来保存(这里应该是因为2个字节不够,所以才用4个字节,一般不会使用3个字节)。而英文字符用ASCII码表示仅需要1个字节,使用Unicode反而会使频繁使用的英文字符的开销变为原来的4倍。
首先我们来看一下Python中不同形式的str对象的大小差异:
>>> sys.getsizeof('ab') - sys.getsizeof('a')
1
>>> sys.getsizeof('一二') - sys.getsizeof('一')
2
>>> sys.getsizeof('') - sys.getsizeof('')
4
由此可见,Python内部对Unicode对象进行了优化:根据文本内容,选择底层存储单元。
Unicode对象底层存储根据文本字符的Unicode码位范围分成三类:
对应枚举如下:
enum PyUnicode_Kind {
/* String contains only wstr byte characters. This is only possible
when the string was created with a legacy API and _PyUnicode_Ready()
has not been called yet. */
PyUnicode_WCHAR_KIND = 0,
/* Return values of the PyUnicode_KIND() macro: */
PyUnicode_1BYTE_KIND = 1,
PyUnicode_2BYTE_KIND = 2,
PyUnicode_4BYTE_KIND = 4
};
根据不同的分类,选择不同的存储单元:
/* Py_UCS4 and Py_UCS2 are typedefs for the respective unicode representations. */ typedef uint32_t Py_UCS4; typedef uint16_t Py_UCS2; typedef uint8_t Py_UCS1;
对应关系如下:
| 文本类型 | 字符存储单元 | 字符存储单元大小(字节) |
|---|---|---|
| PyUnicode_1BYTE_KIND | Py_UCS1 | 1 |
| PyUnicode_2BYTE_KIND | Py_UCS2 | 2 |
| PyUnicode_4BYTE_KIND | Py_UCS4 | 4 |
由于Unicode内部存储结构因文本类型而异,因此类型kind必须作为Unicode对象公共字段进行保存。Python内部定义了一些标志位,作为Unicode公共字段:(介于笔者水平有限,这里的字段在后续内容中不会全部介绍,大家后续可以自行了解。抱拳~)
通过PyUnicode_New函数,根据文本字符数size以及最大字符maxchar初始化Unicode对象。该函数主要是根据maxchar为Unicode对象选择最紧凑的字符存储单元以及底层结构体:(源码比较长,这里就不列出了,大家可以自行了解,下面以表格形式展现)
| maxchar < 128 | 128 <= maxchar < 256 | 256 <= maxchar < 65536 | 65536 <= maxchar < MAX_UNICODE | |
|---|---|---|---|---|
| kind | PyUnicode_1BYTE_KIND | PyUnicode_1BYTE_KIND | PyUnicode_2BYTE_KIND | PyUnicode_4BYTE_KIND |
| ascii | 1 | 0 | 0 | 0 |
| 字符存储单元大小(字节) | 1 | 1 | 2 | 4 |
| 底层结构体 | PyASCIIObject | PyCompactUnicodeObject | PyCompactUnicodeObject | PyCompactUnicodeObject |
C源码:
typedef struct {
PyObject_HEAD
Py_ssize_t length; /* Number of code points in the string */
Py_hash_t hash; /* Hash value; -1 if not set */
struct {
unsigned int interned:2;
unsigned int kind:3;
unsigned int compact:1;
unsigned int ascii:1;
unsigned int ready:1;
unsigned int :24;
} state;
wchar_t *wstr; /* wchar_t representation (null-terminated) */
} PyASCIIObject;
源码分析:
length:文本长度
hash:文本哈希值
state:Unicode对象标志位
wstr:缓存C字符串的一个wchar_t指针,以“\0”结束(这里和我看的另一篇文章讲得不太一样,另一个描述是:ASCII文本紧接着位于PyASCIIObject结构体后面,我个人觉得现在的这种说法比较准确,毕竟源码结构体后面没有别的字段了)
图示如下:
(注意这里state字段后面有一个4字节大小的空洞,这是结构体字段内存对齐造成的现象,主要是为了优化内存访问效率)

ASCII文本由wstr指向,以’abc’和空字符串对象’'为例:


如果文本不全是ASCII,Unicode对象底层便由PyCompactUnicodeObject结构体保存。C源码如下:
/* Non-ASCII strings allocated through PyUnicode_New use the
PyCompactUnicodeObject structure. state.compact is set, and the data
immediately follow the structure. */
typedef struct {
PyASCIIObject _base;
Py_ssize_t utf8_length; /* Number of bytes in utf8, excluding the
* terminating \0. */
char *utf8; /* UTF-8 representation (null-terminated) */
Py_ssize_t wstr_length; /* Number of code points in wstr, possible
* surrogates count as two code points. */
} PyCompactUnicodeObject;
PyCompactUnicodeObject在PyASCIIObject的基础上增加了3个字段:
utf8_length:文本UTF8编码长度
utf8:文本UTF8编码形式,缓存以避免重复编码运算
wstr_length:wstr的“长度”(这里所谓的长度没有找到很准确的说法,笔者也不太清楚怎么能打印出来,大家可以自行研究下)
注意到,PyASCIIObject中并没有保存UTF8编码形式,这是因为ASCII本身就是合法的UTF8,这也是ASCII文本底层由PyASCIIObject保存的原因。
结构图示:

PyUnicodeObject则是Python中str对象的具体实现。C源码如下:
/* Strings allocated through PyUnicode_FromUnicode(NULL, len) use the
PyUnicodeObject structure. The actual string data is initially in the wstr
block, and copied into the data block using _PyUnicode_Ready. */
typedef struct {
PyCompactUnicodeObject _base;
union {
void *any;
Py_UCS1 *latin1;
Py_UCS2 *ucs2;
Py_UCS4 *ucs4;
} data; /* Canonical, smallest-form Unicode buffer */
} PyUnicodeObject;
在日常开发时,要结合实际情况注意字符串拼接前后的内存大小差别:
>>> import sys >>> text = 'a' * 1000 >>> sys.getsizeof(text) 1049 >>> text += '' >>> sys.getsizeof(text) 4080
如果str对象的interned标志位为1,Python虚拟机将为其开启interned机制,
源码如下:(相关信息在网上可以看到很多说法和解释,这里笔者能力有限,暂时没有找到最确切的答案,之后补充。抱拳~但是我们通过分析源码应该是能看出一些门道的)
/* This dictionary holds all interned unicode strings. Note that references
to strings in this dictionary are *not* counted in the string's ob_refcnt.
When the interned string reaches a refcnt of 0 the string deallocation
function will delete the reference from this dictionary.
Another way to look at this is that to say that the actual reference
count of a string is: s->ob_refcnt + (s->state ? 2 : 0)
*/
static PyObject *interned = NULL;
void
PyUnicode_InternInPlace(PyObject **p)
{
PyObject *s = *p;
PyObject *t;
#ifdef Py_DEBUG
assert(s != NULL);
assert(_PyUnicode_CHECK(s));
#else
if (s == NULL || !PyUnicode_Check(s))
return;
#endif
/* If it's a subclass, we don't really know what putting
it in the interned dict might do. */
if (!PyUnicode_CheckExact(s))
return;
if (PyUnicode_CHECK_INTERNED(s))
return;
if (interned == NULL) {
interned = PyDict_New();
if (interned == NULL) {
PyErr_Clear(); /* Don't leave an exception */
return;
}
}
Py_ALLOW_RECURSION
t = PyDict_SetDefault(interned, s, s);
Py_END_ALLOW_RECURSION
if (t == NULL) {
PyErr_Clear();
return;
}
if (t != s) {
Py_INCREF(t);
Py_SETREF(*p, t);
return;
}
/* The two references in interned are not counted by refcnt.
The deallocator will take care of this */
Py_REFCNT(s) -= 2;
_PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
}
可以看到,源码前面还是做一些基本的检查。我们可以看一下37行和50行:将s添加到interned字典中时,其实s同时是key和value(这里我不太清楚为什么会这样做),所以s对应的引用计数是+2了的(具体可以看PyDict_SetDefault()的源码),所以在50行时会将计数-2,保证引用计数的正确。
考虑下面的场景:
>>> class User:
def __init__(self, name, age):
self.name = name
self.age = age
>>> user = User('Tom', 21)
>>> user.__dict__
{'name': 'Tom', 'age': 21}
由于对象的属性由dict保存,这意味着每个User对象都要保存一个str对象‘name’,这会浪费大量的内存。而str是不可变对象,因此Python内部将有潜在重复可能的字符串都做成单例模式,这就是interned机制。Python具体做法就是在内部维护一个全局dict对象,所有开启interned机制的str对象均保存在这里,后续需要使用的时候,先创建,如果判断已经维护了相同的字符串,就会将新创建的这个对象回收掉。
示例:
由不同运算生成’abc’,最后都是同一个对象:
>>> a = 'abc' >>> b = 'ab' + 'c' >>> id(a), id(b), a is b (2752416949872, 2752416949872, True)
个人反思:在写这篇博客时查阅了很多资料,看到了很多已有的但是不同的说法,在整理学习的时候感觉有些吃力,不过尽可能地没有直接输出不确切的观点,而是基于真正的源码来为大家分析。并且str的相关内容应该是目前为止内建类型中最多最杂的,后续会补充的list和dict的相关内容都比它要清晰明确,当然其中最大的问题肯定还是笔者的能力。博客中应该还是有错误和不足的地方,但尽量对源码部分的解释做到准确。目前笔者能力有限,今后进步之后再对该篇博客中错误和不足的地方进行修正补充。抱拳~
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python numpy.ndarray中如何将数据转为int型,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一。每当在 Python 中生成随机数据、字符串或数字时,最好至少大致了解这些数据是如何生成的。用于在 Python 中生成随机数据的不同选项,然后在安全性、多功能性、用途和速度方面对每个选项进行比较。本篇内容不是数学或密码学相关内容,仅仅是根据需要进行尽可能多的数学运算仅此而已。
对于初学者来说,在使用pycharm上会有一些问题,对此小编给大家分享一些pycharm设置方法,对大家熟悉pycharm有一定的帮助。需要的朋友可以参考参考。
python3 默认的是UTF-8格式,但在在用dump写入的时候仍然要注意:如下importjsondata1={"TestId":"testcase001","Method":"post","Title":
Python函数-complex()。complex() 函数用于创建一个值为 real + imag * j 的复数或者转化一个字符串或数为复数。如果第一个参数为字符串,则不需要指定第二个参数。。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008