transforms的使用是怎样,为何需要tensor数据类型
Admin 2022-08-12 群英技术资讯 865 次浏览
这篇文章主要讲解了“transforms的使用是怎样,为何需要tensor数据类型”,文中的讲解内容简单、清晰、详细,对大家学习或是工作可能会有一定的帮助,希望大家阅读完这篇文章能有所收获。下面就请大家跟着小编的思路一起来学习一下吧。按住Ctrl查看transforms的源码可以知道,transforms就是一个python文件,里面定义了很多类,每一个类都是一个工具
在结构那里,可以看到有很多的类


Convert a
PIL Imageornumpy.ndarrayto tensor. This transform does not support torchscript
通过ToTensor来学习transforms如何使用以及为什么使用tensor数据类型
transforms里面每一个类都可以看成是一个模具,我们可以用里面的模具做出一个具体的工具,如何用这个具体的工具来实现具体的功能
比如ToTensor的使用:
from torchvision import transforms from PIL import Image img_path = "data/train/ants_image/0013035.jpg" img = Image.open(img_path) tensor_trans = transforms.ToTensor()#模具(也就是这个类的对象) tensor_img = tensor_trans(img)#实现ToTensor的功能,将一个input(PIL Image)转化成tensor print(tensor_img)
在使用tensorboard里面常用的add_image时,里面的第二个参数是图片的数据类型,这个数据类型,可以是torch.Tensor, numpy.array, or string/blobname,上一篇博客用的是numpy.array,这里,其实可以直接得到tensor类型后直接用
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
img_path = "data/train/ants_image/0013035.jpg"
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer = SummaryWriter("logs")
writer.add_image("Tensor_image", tensor_img)
writer.close()


可以发现基本上transforms里面的每一个类都有一个内置方法__call__(),这个方法和普通的方法的区别其实就是,普通方法一般是类的对象通过.的方式调用,但是call函数不需要,可以直接用对象加括号的形式调用
一个Person类,内置方法__call__和hello都有一个参数name,然后两个方法都输出name,一个通过person(“”)形式调用,一个通过person.hello(“”)调用

Normalize a tensor image with mean and standard deviation.
这个方法进行归一化的时候,传入的参数是有两个列表一个是均值,一个是标准差,每个列表的n表示维度,是根据输入的channel数量决定的,比如我们的图片是rgb那n=3,它能将每个信道的输入进行归一化

根据公式可以知道计算的结果其实就是

代码示例:
from PIL import Image
from torchvision import transforms
img_path = "data/train/ants_image/0013035.jpg"
img = Image.open(img_path)
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer = SummaryWriter("logs")
writer.add_image("Normalize", img_norm)
writer.close()
输出:
tensor(0.3137)
tensor(-0.3725)

Resize the input image to the given size
参数:
可以给一个(H,W)这样的参数,改变图片的大小,也可以指定一个int,改变长和宽的比例

代码示例
print(img.size) trans_resize = transforms.Resize((512, 512)) img_resize = trans_resize(img)# 参数和返回值都是 img PIL print(img_resize)
输出结果:

变成了正方形

Composes several transforms together. This transform does not support torchscript.

可以将第一种类型转化为第二种,参数一的类型做输入,参数二的类型做输出,输入一定要对应,不然就会报错
代码示例
trans_totensor = transforms.ToTensor()
trans_resize_2 = transforms.Resize(512)
# PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python 解析获取 URL 参数及使用,本文分步骤通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
如何通过装饰器实现已有函数执行时间的统计?废话不多说,下面直接上代码
这篇文章主要介绍了python numpy.ndarray中如何将数据转为int型,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家介绍了Python密码学仿射及攻击单字母密码教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这篇文章主要介绍了python中的函数嵌套和嵌套调用方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008