Python矩阵传播机制是什么,有哪些要点
Admin 2022-08-11 群英技术资讯 723 次浏览
今天就跟大家聊聊有关“Python矩阵传播机制是什么,有哪些要点”的内容,可能很多人都不太了解,为了让大家认识和更进一步的了解,小编给大家总结了以下内容,希望这篇“Python矩阵传播机制是什么,有哪些要点”文章能对大家有帮助。我们知道在深度学习中经常要操作各种矩阵(matrix) 。回想一下,我们在操作数组(list)的时候,经常习惯于用**for循环(for-loop)**来对数组的每一个元素进行操作。例如:
my_list = [1,2,3,4] new_list = [] for each in my_list: new_list.append(each*2) print(new_list) # 输出 [2,3,4,5]
如果是矩阵呢:
my_matrix = [[1,2,3,4], [5,6,7,8]] new_matrix = [[],[]] for i in range(2): for j in range(4): new_matrix[i].append(my_matrix[i][j]*2) print(new_matrix)# 输出 [[2, 4, 6, 8], [10, 12, 14, 16]]
实际上,上面的做法是十分的低效的!数据量小的话还不明显,如果数据量大了,尤其是深度学习中我们处理的矩阵往往巨大,那用for循环去跑一个矩阵,可能要你几个小时甚至几天。
Python考虑到了这一点,这也是本文主要想介绍的**“Python的broadcasting”即传播机制**。
先说一句,python中定义矩阵、处理矩阵,我们一般都用numpy这个库。
import numpy as np# 先定义一个3×3矩阵 A:
A = np.array(
[[1,2,3],
[4,5,6],
[7,8,9]])
print("A:\n",A)
print("\nA*2:\n",A*2) # 直接用A乘以2
print("\nA+10:\n",A+10) # 直接用A加上10
运行结果:
A:
[[1 2 3]
[4 5 6]
[7 8 9]]A*2:
[[ 2 4 6]
[ 8 10 12]
[14 16 18]]A+10:
[[11 12 13]
[14 15 16]
[17 18 19]]
接着,再看看矩阵×(+)矩阵:
#定义一个3×1矩阵(此时也可叫向量了)
B = np.array([[10],
[100],
[1000]])
print("\nB:\n",B)
print("\nA+B:\n",A+B)
print("\nA*B:\n",A*B)
运行结果:
B:
[[ 10]
[ 100]
[1000]]A+B:
[[ 11 12 13]
[ 104 105 106]
[1007 1008 1009]]A*B:
[[ 10 20 30]
[ 400 500 600]
[7000 8000 9000]]
可见,虽然A和B的形状不一样,一个是3×3,一个是3×1,但是我们在python中可以直接相加、相乘,相减相除也可以。也许看到这,大家都对broadcasting有感觉了。
用一个图来示意一下:

所谓“传播”,就是把一个数或者一个向量进行“复制”,从而作用到矩阵的每一个元素上。
有了这种机制,那进行向量和矩阵的运算,就太方便了!理解了传播机制,就可以随心所欲地对矩阵进行各种便捷的操作了。
numpy内置了很多的数学函数,例如np.log(),np.abs(),np.maximum()等等上百种。直接把矩阵丢进去,就可以算出新矩阵! 示例:
print(np.log(A))
输出把A矩阵每一个元素求log后得到的新矩阵:
array([[0. , 0.69314718, 1.09861229], [1.38629436, 1.60943791, 1.79175947], [1.94591015, 2.07944154, 2.19722458]])
再比如深度学习中常用的ReLU激活函数,就是y=max(0,x),

也可以对矩阵直接运算:
X = np.array([[1,-2,3,-4], [-9,4,5,6]])Y = np.maximum(0,X)print(Y)
得到:
[[1 0 3 0] [0 4 5 6]]
更多的numpy数学函数,可以参见文档
其实这才是我写下本文的目的。。。前面扯了这么多,只是做个铺垫( /ω\)
我昨天遇到个问题,就是我要对ReLU函数求导,易知,y=max(0,x)的导函数是:y’ = 0 if x<0 y’ = 1 if x>0 但是这个y’(x)numpy里面没有定义,需要自己构建。即,我需要将矩阵X中的小于0的元素变为0,大于0的元素变为1。搞了好久没弄出来,后来在StackOverflow上看到了解决办法:
def relu_derivative(x): x[x<0] = 0 x[x>0] = 1 return x X = np.array([[1,-2,3,-4], [-9,4,5,6]]) print(relu_derivative(X))
输出:
[[1 0 1 0]
[0 1 1 1]]
**居然这么简洁就出来了!!!**ミ゚Д゚彡 (゚Д゚#)
这个函数relu_derivative中最难以理解的地方,就是**x[x>0]**了。于是我试了一下:
X = np.array([[1,-2,3,-4], [-9,4,5,6]]) print(X[X>0]) print(X[X<0])
输出:
[1 3 4 5 6]
[-2 -4 -9]
它直接把矩阵X中满足条件的元素取了出来!原来python对矩阵还有这种操作!
所以可以这么理解,X[X>0]相当于一个“选择器”,把满足条件的元素选出来,然后直接全部赋值。
用这种方法,我们便可以定义各种各样我们需要的函数,然后对矩阵整体进行更新操作了!
可以看出,python以及numpy对矩阵的操作简直神乎其神,方便快捷又实惠。其实上面忘了写一点,那就是计算机进行矩阵运算的效率要远远高于用for-loop来运算,
不信可以用跑一跑:
# vetorization vs for loop
# define two arrays a, b:
a = np.random.rand(1000000)
b = np.random.rand(1000000)
# for loop version:
t1 = time.time()
c = 0
for i in range(1000000):
c += a[i]*b[i]
t2 = time.time()
print(c)
print("for loop version:"+str(1000*(t2-t1))+"ms")
time1 = 1000*(t2-t1)
# vectorization version:
t1 = time.time()
c = np.dot(a,b)
t2 = time.time()
print(c)
print("vectorization version:"+str(1000*(t2-t1))+"ms")
time2 = 1000*(t2-t1)
print("vectorization is faster than for loop by "+str(time1/time2)+" times!")
运行结果:
249765.8415288075
for loop version:627.4442672729492ms
249765.84152880745
vectorization version:1.5032291412353516ms
vectorization is faster than for loop by 417.39762093576525 times!
可见,用for方法和向量化方法,计算结果是一样,但是后者比前者快了400多倍!
因此,在计算量很大的时候,我们要尽可能想办法对数据进行Vectorizing,即“向量化” ,以便让计算机进行矩阵运算。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文主要介绍了Django实现视频播放的具体示例,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下<BR>
在编程语言中,将以某种方式(比如通过编号)组合起来的数据元素(如数字,字符串乃至其他数据结构)集合称为数据结构。在python中,最基本的数据结构为序列(sequence,简写为seq)。 所谓序列,指的是一块可存放多个值的连续内存空间,这些值按一定顺序排列,可通过每个值所在位置的编号(称为索引)访问它们。 为了更形象的认识序列,可以将它看做是一家旅店,那么店中的每个房间就如同序列存储数据的一个个内存空间,每个房间所特有的房间号就相当于索引值。也就是说,通过房间号(索引)我们可以找到这家旅店(序列)中_来自Python3 教程,w3cschool编程狮。
这篇文章主要为大家介绍了Python变量的作用域,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
这篇文章主要为大家详细介绍了如何让Matplotlib、Seaborn的静态数据图动起来,变得栩栩如生。文中的示例代码讲解详细,感兴趣的小伙伴可以学习一下
python staticmethod 返回类,函数的静态方法。该方法不强制要求传递参数,如下声明一个静态方法:以上实例声明了静态方法 f,从而可以实现实例化使用 C().f(),当然也可以不实例化调用该方法 C.f()。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008