python多线程和多进程怎么理解,如何使用?
Admin 2021-05-25 群英技术资讯 1006 次浏览
很多新手学习python时,对于多进程和多线程不是很清楚,为了帮助大家更好的学习和理解多进程和多线程,这篇文章就给大家介绍关于PHP多进程和多线程的使用,下面有详细的介绍以及代码,供大家参考学习。
进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位;
一个应用程序至少包含一个进程,一个进程至少包含一个线程;
每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之间是共享该进程的内存空间的;
Python的多进程依赖于multiprocess模块;使用多进程可以利用多个CPU进行并行计算;
实例:
from multiprocessing import Process
import os
import time
def long_time_task(i):
print('子进程: {} - 任务{}'.format(os.getpid(), i))
time.sleep(2)
print("结果: {}".format(8 ** 20))
if __name__=='__main__':
print('当前母进程: {}'.format(os.getpid()))
start = time.time()
p1 = Process(target=long_time_task, args=(1,))
p2 = Process(target=long_time_task, args=(2,))
print('等待所有子进程完成。')
p1.start()
p2.start()
p1.join()
p2.join()
end = time.time()
print("总共用时{}秒".format((end - start)))
新创建进程和进程间切换是需要消耗资源的,所以应该控制进程数量;
同时可运行的进程数量收到CPU核数限制;
使用进程池pool创建进程:
使用进程池可以避免手工进行进程的创建的麻烦,默认数量是CPU核数;
Pool类可以提供指定数量的进程供用户使用,当有新的请求被提交到Pool中的时候,如果进程池还没有满,就会创建一个新的进程来执行请求;如果池已经满了,请求就会等待,等到有空闲进程可以使用时,才会执行请求;
几个方法:
1.apply_async
作用是向进程池提交需要执行的函数和参数,各个进程采用非阻塞的异步方式调用,每个进程只管自己运行,是默认方式;
2.map
会阻塞进程直到返回结果;
3.map_sunc
非阻塞进程;
4.close
关闭进程池,不再接受任务;
5.terminate
结束进程;
6.join
主进程阻塞,直到子进程执行结束;
实例:
from multiprocessing import Pool, cpu_count
import os
import time
def long_time_task(i):
print('子进程: {} - 任务{}'.format(os.getpid(), i))
time.sleep(2)
print("结果: {}".format(8 ** 20))
if __name__=='__main__':
print("CPU内核数:{}".format(cpu_count()))
print('当前母进程: {}'.format(os.getpid()))
start = time.time()
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('等待所有子进程完成。')
p.close()
p.join()
end = time.time()
print("总共用时{}秒".format((end - start)))
在join之前,必须使用close或者terminate,让进程池不再接受任务;
通常,进程之间是相互独立的,每个进程都有独立的内存。通过共享内存(nmap模块),进程之间可以共享对象,使多个进程可以访问同一个变量(地址相同,变量名可能不同)。多进程共享资源必然会导致进程间相互竞争,所以应该尽最大可能防止使用共享状态。还有一种方式就是使用队列queue来实现不同进程间的通信或数据共享,这一点和多线程编程类似。
下例这段代码中中创建了2个独立进程,一个负责写(pw), 一个负责读(pr), 实现了共享一个队列queue。
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
print('Process to write: {}'.format(os.getpid()))
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
print('Process to read:{}'.format(os.getpid()))
while True:
value = q.get(True)
print('Get %s from queue.' % value)
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()
python 3中的多进程编程主要依靠threading模块。创建新线程与创建新进程的方法非常类似。threading.Thread方法可以接收两个参数, 第一个是target,一般指向函数名,第二个时args,需要向函数传递的参数。对于创建的新线程,调用start()方法即可让其开始。我们还可以使用current_thread().name打印出当前线程的名字。
import threading
import time
def long_time_task(i):
print('当前子线程: {} 任务{}'.format(threading.current_thread().name, i))
time.sleep(2)
print("结果: {}".format(8 ** 20))
if __name__=='__main__':
start = time.time()
print('这是主线程:{}'.format(threading.current_thread().name))
thread_list = []
for i in range(1, 3):
t = threading.Thread(target=long_time_task, args=(i, ))
thread_list.append(t)
for t in thread_list:
t.start()
for t in thread_list:
t.join()
end = time.time()
print("总共用时{}秒".format((end - start)))
一个进程所含的不同线程间共享内存,这就意味着任何一个变量都可以被任何一个线程修改,因此线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。如果不同线程间有共享的变量,其中一个方法就是在修改前给其上一把锁lock,确保一次只有一个线程能修改它。threading.lock()方法可以轻易实现对一个共享变量的锁定,修改完后release供其它线程使用。
import threading
class Account:
def __init__(self):
self.balance = 0
def add(self, lock):
# 获得锁
lock.acquire()
for i in range(0, 100000):
self.balance += 1
# 释放锁
lock.release()
def delete(self, lock):
# 获得锁
lock.acquire()
for i in range(0, 100000):
self.balance -= 1
# 释放锁
lock.release()
if __name__ == "__main__":
account = Account()
lock = threading.Lock()
# 创建线程
thread_add = threading.Thread(target=account.add, args=(lock,), name='Add')
thread_delete = threading.Thread(target=account.delete, args=(lock,), name='Delete')
# 启动线程
thread_add.start()
thread_delete.start()
# 等待线程结束
thread_add.join()
thread_delete.join()
print('The final balance is: {}'.format(account.balance))
from queue import Queue
import random, threading, time
# 生产者类
class Producer(threading.Thread):
def __init__(self, name, queue):
threading.Thread.__init__(self, name=name)
self.queue = queue
def run(self):
for i in range(1, 5):
print("{} is producing {} to the queue!".format(self.getName(), i))
self.queue.put(i)
time.sleep(random.randrange(10) / 5)
print("%s finished!" % self.getName())
# 消费者类
class Consumer(threading.Thread):
def __init__(self, name, queue):
threading.Thread.__init__(self, name=name)
self.queue = queue
def run(self):
for i in range(1, 5):
val = self.queue.get()
print("{} is consuming {} in the queue.".format(self.getName(), val))
time.sleep(random.randrange(10))
print("%s finished!" % self.getName())
def main():
queue = Queue()
producer = Producer('Producer', queue)
consumer = Consumer('Consumer', queue)
producer.start()
consumer.start()
producer.join()
consumer.join()
print('All threads finished!')
if __name__ == '__main__':
main()
对于IO密集型操作,大部分消耗时间其实是等待时间,在等待时间中CPU是不需要工作的,那你在此期间提供双CPU资源也是利用不上的,相反对于CPU密集型代码,2个CPU干活肯定比一个CPU快很多。那么为什么多线程会对IO密集型代码有用呢?这时因为python碰到等待会释放GIL供新的线程使用,实现了线程间的切换。
现在大家对于python多线程和多进程的使用应该都有所了解了,上述示例具有一定的借鉴价值,有需要的朋友可以参考学习,希望对大家理解多线程和多进程有帮助。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
要求给定指定的行、列以及对应的工作表作为参数,能够正确解析合并单元格,获取指定单元格的值。如果直接根据行列获取对应单元格的值,则合并单元格非左上角的其他单元格都会获取到None值。
这篇文章主要介绍了python xlwt模块的使用解析,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章给大家分享的是有关python下划线怎么用的内容,python下划线在很多场景中都是比较常见的,小编觉得挺实用的,因此分享给大家做个参考,接下来我们一起来学习一下python下划线的用法吧。
这篇文章主要给大家分享Pytorch怎样进行三角函数计算,对新手学习Pytorch函数具有一定的参加和学习价值,感兴趣的朋友可以看一下,希望大家阅读完这篇文章能有所收获,下面我们一起来学习一下吧。
测试环境:JupyterQtConsole4.2.1Python3.6.11. 基本画线: 以下得出红蓝绿三色的点importnumpyasnpimportmatplotlib.pyplotasplt#evenlysampledtimeat200msintervalst=np.arange(0.,5.,0.2)#reddashes,bl
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008