tensorflow入门基础学习有哪些要点要了解的
Admin 2022-08-05 群英技术资讯 1235 次浏览
关于“tensorflow入门基础学习有哪些要点要了解的”的知识有一些人不是很理解,对此小编给大家总结了相关内容,具有一定的参考借鉴价值,而且易于学习与理解,希望能对大家有所帮助,有这个方面学习需要的朋友就继续往下看吧。TensorFlow用张量这种数据结构来表示所有的数据。
用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数。
编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或gedit比较顺手,那也可以的啦。我们既然已经安装了anaconda,那么它里面自带一个还算不错的编辑器,名叫spyder,用起来和matlab差不多,还可以在右上角查看变量的值。因此我一直使用这个编辑器。它的启动方式也很简单,直接在终端输入spyder就行了。
我们一般引入tensorflow都用语句
import tensorflow as tf
因此,以后文章中我就直接用tf来表示tensorflow了。
在tf中,常量的定义用语句:
a=tf.constant(10)
这就定义了一个值为10的常量a
变量用Variable来定义, 并且必须初始化,如:
x=tf.Variable(tf.ones([3,3])) y=tf.Variable(tf.zeros([3,3]))
分别定义了一个3x3的全1矩阵x,和一个3x3的全0矩阵y,0和1的值就是初始化。
变量定义完后,还必须显式的执行一下初始化操作,即需要在后面加上一句:
init=tf.global_variables_initializer()
这句可不要忘了,否则会出错。
例:自定义一个拉普拉斯的W变量:
import tensorflow as tf import numpy as np x=np.array([[1,1,1],[1,-8,1],[1,1,1]]) w=tf.Variable(initial_value=x) sess=tf.Session() sess.run(tf.global_variables_initializer()) print(sess.run(w))
变量在定义时要初始化,但是如果有些变量刚开始我们并不知道它们的值,无法初始化,那怎么办呢?
那就用占位符来占个位置,如:
x = tf.placeholder(tf.float32, [None, 784])
指定这个变量的类型和shape,以后再用feed的方式来输入值。
如果把下面的python语句改在tf语句,该怎么写呢:
x=3 y=2 z=x+y print(z)
定义两个变量,并将两个数相加,输出结果。如果在tf中直接像上面这样写,那就错了。x,y,z分别是三个tensor对象,对象间的运算称之为操作(op), tf不会去一条条地执行各个操作,而是把所有的操作都放入到一个图(graph)中,图中的每一个结点就是一个操作。然后行将整个graph 的计算过程交给一个 TensorFlow 的Session, 此 Session 可以运行整个计算过程,比起操作(operations)一条一条的执行效率高的多。
执行代码如下:
import tensorflow as tf x = tf.Variable(3) y = tf.Variable(5) z=x+y init =tf.global_variables_initializer()
with tf.Session() as sess: sess.run(init) print(sess.run(z))
其中sess.run()即是执行,注意要先执行变量初始化操作,再执行运算操作。
Session需要先创建,使用完后还需要释放。因此我们使用with...as..语句,让系统自动释放。
import tensorflow as tf
word=tf.constant('hello,world!')
with tf.Session() as sess:
print(sess.run(word))
import tensorflow as tf
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)
add = tf.add(a, b)
mul = tf.mul(a, b)
with tf.Session() as sess:
print('a+b=',sess.run(add, feed_dict={a: 2, b: 3}))
print('a*b=',sess.run(mul, feed_dict={a: 2, b: 3}))
此处使用feed_dict以字典的方式对多个变量输入值。
import tensorflow as tf
a=tf.Variable(tf.ones([3,2]))
b=tf.Variable(tf.ones([2,3]))
product=tf.matmul(5*a,4*b)
init=tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
print(sess.run(product))
其中
product=tf.matmul(5*a,4*b)
也可以改成
product=tf.matmul(tf.mul(5.0,a),tf.mul(4.0,b))
定义变量时,没有指定数据类型,则默认为float32,因此是5.0而不是5
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Requests模块是一个用于网络访问的模块,其实类似的模块有很多,比如urllib,urllib2,httplib,httplib2,他们基本都提供相似的功能,那为
定义差集: A,B是两个集合,所有属于A且不属于B的元素构成的集合, 就是差集。交集: A,B是两个集合,既属于A又属于B的元素构成的集合
本文主要介绍了pytest中配置文件pytest.ini使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容,下面这篇文章主要给大家介绍了关于Python pandas索引的设置和修改的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
这篇文章主要为大家详细介绍了python实现五子棋双人对弈,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008