生成和读取tfrecord文件的操作是什么?
Admin 2021-05-22 群英技术资讯 1401 次浏览
tfrecord是tensorflow中常用的数据打包格式,这篇文章给大家介绍的就是关于tfrecord文件的生成和读取,本文有具体以及步骤,具有的一定的参考价值,需要的朋友可以参考学习。
训练模型时,我们并不是直接将图像送入模型,而是先将图像转换为tfrecord文件,再将tfrecord文件送入模型。为进一步理解tfrecord文件,本例先将6幅图像及其标签转换为tfrecord文件,然后读取tfrecord文件,重现6幅图像及其标签。
1、生成tfrecord文件
import os
import numpy as np
import tensorflow as tf
from PIL import Image
filenames = [
'images/cat/1.jpg',
'images/cat/2.jpg',
'images/dog/1.jpg',
'images/dog/2.jpg',
'images/pig/1.jpg',
'images/pig/2.jpg',]
labels = {'cat':0, 'dog':1, 'pig':2}
def int64_feature(values):
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def bytes_feature(values):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
with tf.Session() as sess:
output_filename = os.path.join('images/train.tfrecords')
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
for filename in filenames:
#读取图像
image_data = Image.open(filename)
#图像灰度化
image_data = np.array(image_data.convert('L'))
#将图像转化为bytes
image_data = image_data.tobytes()
#读取label
label = labels[filename.split('/')[-2]]
#生成protocol数据类型
example = tf.train.Example(features=tf.train.Features(feature={'image': bytes_feature(image_data),
'label': int64_feature(label)}))
tfrecord_writer.write(example.SerializeToString())
2、读取tfrecord文件
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer(['images/train.tfrecords'])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)})
# 获取图像数据
image = tf.decode_raw(features['image'], tf.uint8)
# 恢复图像原始尺寸[高,宽]
image = tf.reshape(image, [60, 160])
# 获取label
label = tf.cast(features['label'], tf.int32)
with tf.Session() as sess:
# 创建一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner, 此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(6):
image_b, label_b = sess.run([image, label])
img = Image.fromarray(image_b, 'L')
plt.imshow(img)
plt.axis('off')
plt.show()
print(label_b)
# 通知其他线程关闭
coord.request_stop()
# 其他所有线程关闭之后,这一函数才能返回
coord.join(threads)
以上就是关于怎样实现tfrecord文件生成与读取的操作介绍,希望文本对大家学习有帮助,想要了解更多tfrecord文件生成与读取的内容大家可以关注其他相关文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家详细介绍了python实现双向链表原理,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要为大家介绍了python skimage图像处理,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这篇文章主要介绍了基于Python的EasyGUI学习实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
问题场景:问题描述原因分析及解决方案:问题场景:在SparkSQL中,因为需要用到自定义的UDAF函数,所以用pyspark自定义了一个,但是遇到了一个问题,就是自定义的UDAF函数一直报Attri
我们经常在使用python中的过程中要对列表进行遍历操作,其实作为python中必不可少的字典也需要遍历。python为字典类型内置了values()方法,以列表形式返回字典中的所有值,该方法会将字典里的值遍历出来。
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008