Pandas中df.drop()方法作用是什么,怎么应用
Admin 2022-08-02 群英技术资讯 1328 次浏览
df.drop(labels = None, axis = 0, index = None, columns = None, level = None, inplace = False, errors = 'raise')
1.labels:要删除的列或者行,如果要删除多个,传入列表
2.axis:轴的方向,0为行,1为列,默认为0
3.index:指定的一行或多行
4.columns:指定的一列或多列
5.level:索引层级,将删除此层级
6.inplace:布尔值,是否生效
7.errors:ignore或raise,默认为raise,如果为ignore,则容忍错误,仅删除现有标签
# 删除数据 DataFrame.drop() import pandas as pd df = pd.DataFrame([['x','x',1],['x','x',1],['z','x',2]], columns = ['A','B','C']) # 删除指定行 res1 = df.drop([0,1]) res2 = df.drop(index = [0,1]) # 删除指定列 #res3该方法一定要指定axis = 1,否则会报错 res3 = df.drop(['B','C'], axis = 1) res4 = df.drop(columns = ['B','C'])
df
res1
res2
res3
res4
删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据
del与drop的区别
在Python中del和drop方法都能够删除dataframe中的列数据,但两者也有着些许区别:
1. del属于Python的内置函数函数,drop属于pandas中的内置函数
2. del 删除列
drop 删除行和列(默认行)
3. drop一次可以处理多个项目;del一次只能操作一个
4. drop可以就地操作或返回副本;del仅是就地操作
5. 两种函数在执行效率上很接近,但是在较大数据上,drop函数优势更明显,尤其是在处理多列数据时
del crime['Total'] crime=crime.drop(['Total'],axis=1)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
在本篇文章里小编给大家整理了关于Python的缺点和劣势总结,有兴趣的朋友们可以学习下。
我们经常在使用python中的过程中要对列表进行遍历操作,其实作为python中必不可少的字典也需要遍历。python为字典类型内置了values()方法,以列表形式返回字典中的所有值,该方法会将字典里的值遍历出来。
每天上班最痛苦的事情就是早起早起早起!这是大部分上班族的痛苦,但是不上班又是不可能的啦,因为都是为了搞钱。本文用Python制作了三款有趣的闹钟,感兴趣的可以学习一下
这篇文章主要为大家介绍了caffe的python接口生成solver文件详解学习示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这篇文章主要介绍了OpenCV 基本图形绘制函数,用于绘制圆的circle函数,用于绘制填充的多边形的fillPoly函数,本文给大家提到好几种,通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008