Pandas查询数据有哪些方法,步骤是什么
Admin 2022-08-02 群英技术资讯 751 次浏览
这篇文章主要介绍“Pandas查询数据有哪些方法,步骤是什么”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pandas查询数据有哪些方法,步骤是什么”文章能帮助大家解决问题。注意
以上查询方法,既适用于行,也适用于列
##########################################
>>> df=pd.DataFrame(np.random.rand(25).reshape([5,5]),index=['A','B','C','D','E'],columns=['c1','c2','c3','c4','c5'])
>>> df
c1 c2 c3 c4 c5
A 0.499404 0.082137 0.472568 0.649200 0.121681
B 0.564688 0.102398 0.374904 0.091373 0.495510
C 0.319272 0.720225 0.979103 0.910206 0.766642
D 0.478346 0.311616 0.466326 0.045612 0.258015
E 0.421653 0.577140 0.103048 0.235219 0.550336
##########################################
#获取c1,c2两列
df[['c1','c2']]
>>> df[['c1','c2']]
c1 c2
A 0.499404 0.082137
B 0.564688 0.102398
C 0.319272 0.720225
D 0.478346 0.311616
E 0.421653 0.577140
##########################################
#获取c1列
df.c1
>>> df.c1 A 0.499404 B 0.564688 C 0.319272 D 0.478346 E 0.421653 Name: c1, dtype: float64
##########################################
#获取索引为A-C行数据
df['A':'C']
>>> df['A':'C']
c1 c2 c3 c4 c5
A 0.499404 0.082137 0.472568 0.649200 0.121681
B 0.564688 0.102398 0.374904 0.091373 0.495510
C 0.319272 0.720225 0.979103 0.910206 0.766642
##########################################
#获取2-3行数据
df[1:3]
>>> df[1:3]
c1 c2 c3 c4 c5
B 0.564688 0.102398 0.374904 0.091373 0.495510
C 0.319272 0.720225 0.979103 0.910206 0.766642
##########################################
1、使用数值区间进行范围查询
有点类似list的切片
>>> df.loc['A':'D',:]
c1 c2 c3 c4 c5
A 0.499404 0.082137 0.472568 0.649200 0.121681
B 0.564688 0.102398 0.374904 0.091373 0.495510
C 0.319272 0.720225 0.979103 0.910206 0.766642
D 0.478346 0.311616 0.466326 0.045612 0.258015
##########################################
2、单个label值查询
类似坐标查询
>>> df.loc['A','c2'] 0.08213716245372071
##########################################
3、使用列表批量查询
>>> df.loc[['A','B','D'],['c1','c3']]
c1 c3
A 0.499404 0.472568
B 0.564688 0.374904
D 0.478346 0.466326
##########################################
4、使用条件表达式查询
>>> df.loc[df['c2']>0.5,:]
c1 c2 c3 c4 c5
C 0.319272 0.720225 0.979103 0.910206 0.766642
E 0.421653 0.577140 0.103048 0.235219 0.550336
>>> df[(df['c2']>0.2) & (df['c3'] < 0.8)]
c1 c2 c3 c4 c5
D 0.478346 0.311616 0.466326 0.045612 0.258015
E 0.421653 0.577140 0.103048 0.235219 0.550336
##########################################
5、使用函数查询
def query_my_data(df):
return ((df['c3']>0.2) & (df["c4"]<0.8))
df.loc[query_my_data, :]
c1 c2 c3 c4 c5
B 0.845310 0.545040 0.946026 0.106405 0.984376
C 0.844622 0.947104 0.878854 0.377638 0.175846
E 0.139952 0.420424 0.364295 0.012773 0.307853
##########################################
同df.loc类似,根据索引定位
#提取2-3行,1-2列数据
df.iloc[1:3,0:2]
>>> df.iloc[1:3,0:2]
c1 c2
B 0.564688 0.102398
C 0.319272 0.720225
##########################################
#提取第二第三行,第4列数据
df.iloc[[1,2],[3]]
c4 B 0.091373 C 0.910206
##########################################
#提取指定位置单个数值
df.iloc[3,4]
>>> df.iloc[3,4] 0.2580148841605816
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
python int是什么意思?python中的int()函数用于将一个字符串或数字转换为整型。
匿名函数就是不需要显式的指定函数名,这篇文章给大家介绍的就是关于python匿名函数的内容,下文会详细介绍python匿名函数的定义、语法、使用场景、使用形式等等,对大家学习和理解python匿名函数有一定的帮助,感兴趣的朋友可以了解了解。
这篇文章主要介绍了python调用kubernetesAPI简单使用方法,K8s也提供API接口,提供这个接口的是管理节点的apiserver组件,下文更多相关内容,需要的小伙伴可以参考一下
这篇文章给大家分享的是有关Python中Numpy怎么用的内容。Numpy是Python学习的基础内容,小编觉得挺实用的,因此分享给大家做个参考,接下来一起跟随小编看看吧。
我们做项目经常会遇到弹出框,下面这篇文章主要给大家介绍了关于Python Selenium弹窗处理的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008