Python中怎么实现绘制散点图,散点图有何用
Admin 2022-07-28 群英技术资讯 983 次浏览
这篇文章给大家介绍了“Python中怎么实现绘制散点图,散点图有何用”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。散点图是指在数理统计回归分析中,数据点在直角坐标系平面上的分布图, 散点图表示因变量随自变量而变化的大致趋势,由此趋势可以选择合适的函数进行经验分布的拟合,进而找到变量之间的函数关系。
散点图主要的构成元素有:数据源,横纵坐标轴,变量名,研究的对象。而基本的要素就是点,也就是我们统计的数据,由这些点的分布我们才能观察出变量之间的关系。
而散点图一般研究的是两个变量之间的关系,往往满足不了我们日常的需求。因此,气泡图的诞生就是为散点图增加变量,提供更加丰富的信息,点的大小或者颜色可以定义为第三个变量,因为,做出来的散点图类似气泡,也由此得名为气泡图。
数据越多散点图呈现的效果就越明显。这也就是我们平时在进行建模的时候,采用回归拟合的原则,如果数据是遵循某种函数关系,我们可以通过机器进行训练,不断的迭代达到最优效果。
import pyecharts.options as opts
from pyecharts.charts import Scatter
data = [
[10.0, 8.04],
[8.0, 6.95],
[13.0, 7.58],
[9.0, 8.81],
[11.0, 8.33],
[14.0, 9.96],
[6.0, 7.24],
[4.0, 4.26],
[12.0, 10.84],
[7.0, 4.82],
[5.0, 5.68],
]
data.sort(key=lambda x: x[0])
x_data = [d[0] for d in data]
y_data = [d[1] for d in data]
(
Scatter(init_opts=opts.InitOpts(width="1200px", height="600px"))
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="",
y_axis=y_data,
symbol_size=20,
label_opts=opts.LabelOpts(is_show=False),
)
.set_series_opts()
.set_global_opts(
xaxis_opts=opts.AxisOpts(
type_="value", splitline_opts=opts.SplitLineOpts(is_show=True)
),
yaxis_opts=opts.AxisOpts(
type_="value",
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=True),
),
tooltip_opts=opts.TooltipOpts(is_show=False),
)
.render("简单散点图.html")
)

我们在平时的运用场景中,发现散点图太多呈现的效果图太密集了,我们只需要知道某一个区域它分布的数量,本来柱状图可以解决,但是这个散点图一个更好,可以反映区域的分布,主要可以看见它的数量趋势变化,根据自己的业务需求来使用吧。
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis(
"类别1",
[list(z) for z in zip(Faker.values(), Faker.choose())],
label_opts=opts.LabelOpts(
formatter=JsCode(
"function(params){return params.value[1] +' : '+ params.value[2];}"
)
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="多维度数据"),
tooltip_opts=opts.TooltipOpts(
formatter=JsCode(
"function (params) {return params.name + ' : ' + params.value[2];}"
)
),
visualmap_opts=opts.VisualMapOpts(
type_="color", max_=150, min_=20, dimension=1
),
)
.render("多维数据散点图.html")
)
print([list(z) for z in zip(Faker.values(), Faker.choose())])

显示分割线,其实和之前的没有异样。
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis("A", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="标题"),
xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
)
.render("分割线.html")
)

用二维的数据来展示每个类别的分布状况,图表可显示多个类别,这样极大的增强了我们解释的效果。
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis("1", Faker.values())
.add_yaxis("2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="标题"),
visualmap_opts=opts.VisualMapOpts(type_="size", max_=150, min_=20),
)
.render("凸出大小散点图.html")
)


之前的散点都是静态的,下面我们来看看动态的散点图;
from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
c = (
EffectScatter()
.add_xaxis(Faker.choose())
.add_yaxis("", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="散点图"))
.render("动态散点图.html")
)

from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
from pyecharts.globals import SymbolType
c = (
EffectScatter()
.add_xaxis(Faker.choose())
.add_yaxis("", Faker.values(), symbol=SymbolType.ARROW)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"))
.render("箭头动态散点图.html")
)

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python程序员开发中常犯的10个错误,不知道你有没有中枪呢,需要的朋友可以参考下
利用(面向)对象的(属性和方法)去进行编码的过程即面向对象编程。本文将通过示例详细为大家介绍一下Python中的面向对象编程,需要的可以参考一下
本文主要介绍了python [::-1] [::-1,::-1]的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要分享了6 个值得收藏的 Python 代码,希望队长正在学习的你有所帮助,需要的小伙伴也可以参考一下
利用python解决问题的过程中,经常会遇到从某个对象中抽取部分值的情况,"切片"操作正是专门用于实现这一目标的有力武器,下面这篇文章主要给大家介绍了关于Python切片操作的相关资料,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008