sklearn怎么样画决策树,具体过程是什么
Admin 2022-07-26 群英技术资讯 705 次浏览
进入官网下载并安装:
https://graphviz.gitlab.io/_pages/Download/Download_windows.html
并将下列路径配置为环境变量:
在cmd中测试:
dot -version
python代码
import numpy as np import pandas as pd from sklearn import tree import graphviz # x,y是sklearn中需要拟合的数据 x = np.array(exam_train) y = np.array(classes_train) clf = tree.DecisionTreeClassifier(criterion='entropy', class_weight='balanced', max_depth=25) clf = clf.fit(x, y) dot_data = tree.export_graphviz(clf, out_file=None, feature_names=None, filled=True, rounded=True) # 重要参数可定制 graph = graphviz.Source(dot_data) graph.render(view=True, format="pdf", filename="decisiontree_pdf")
可以生成一张贼帅的决策树PDF:
age look income orderly target older ugly low yes no young ugly high no no young handsome low no no young handsome high yes yes young handsome medium yes yes young handsome medium no no
python源代码:
# -*- coding:utf-8*- # 将字典 转化为 sklearn 用的数据形式 数据型 矩阵 from sklearn.feature_extraction import DictVectorizer import csv from sklearn import preprocessing from sklearn import tree allElectronicsData = open('c:/pic/data/tree.csv','rb') reader = csv.reader(allElectronicsData) header = reader.next() # print header ## 数据预处理 featureList = [] labelList = [] for row in reader: # print row[-1] labelList.append(row[-1]) # 下面这几步的目的是为了让特征值转化成一种字典的形式,就可以调用sk-learn里面的DictVectorizer,直接将特征的类别值转化成0,1值 rowDict = {} for i in range(1, len(row) - 1): rowDict[header[i]] = row[i] featureList.append(rowDict) for each in featureList: print each # Vectorize features vec = DictVectorizer() dummyX = vec.fit_transform(featureList).toarray() print("dummyX:"+str(dummyX)) print(vec.get_feature_names()) # label的转化,直接用preprocessing的LabelBinarizer方法 lb = preprocessing.LabelBinarizer() dummyY = lb.fit_transform(labelList) print("dummyY:"+str(dummyY)) print("labelList:"+str(labelList)) #criterion是选择决策树节点的 标准 ,这里是按照“熵”为标准,即ID3算法;默认标准是gini index,即CART算法。 clf = tree.DecisionTreeClassifier() clf = clf.fit(dummyX,dummyY) print("clf:"+str(clf)) # 导入相关函数,可视化决策树 # 导出的结果是一个dot文件(在系统默认路劲),需要安装Graphviz才能将它住哪华为PDF或png格式 # 输出的dot文件可以使用graphvize软件转为PDF,graphvize安装目录中的bin目录放入到环境变量的Path中 # 使用如下命令 #cmd # dot -Tpdf c:/tree.dot -o c:/tree.pdf #下载地址:http://www.graphviz.org/Download_windows.php #生成dot文件 with open("c:/tree.dot",'w') as f: f = tree.export_graphviz(clf, feature_names= vec.get_feature_names(),out_file= f)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
python中map函数和filter函数有什么区别?map函数根据给定函数对指定序列做映射;
在编程语言中,将以某种方式(比如通过编号)组合起来的数据元素(如数字,字符串乃至其他数据结构)集合称为数据结构。在python中,最基本的数据结构为序列(sequence,简写为seq)。 所谓序列,指的是一块可存放多个值的连续内存空间,这些值按一定顺序排列,可通过每个值所在位置的编号(称为索引)访问它们。 为了更形象的认识序列,可以将它看做是一家旅店,那么店中的每个房间就如同序列存储数据的一个个内存空间,每个房间所特有的房间号就相当于索引值。也就是说,通过房间号(索引)我们可以找到这家旅店(序列)中_来自Python3 教程,w3cschool编程狮。
这篇文章主要为大家介绍了python循环之彩色圆环实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
很多小伙伴遇到pycharm下载库时出现Failed to install package不知道怎么解决,下面小编给大家带来了解决方法,需要的朋友参考下吧
这篇文章主要为大家详细介绍了python实现好看的时钟效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008