matmul、mm与bmm三者有何差别,如何应用
Admin 2022-07-19 群英技术资讯 586 次浏览
pytorch中matmul和mm和bmm区别 matmulmmbmm结论
先看下官网上对这三个函数的介绍。
顾名思义, 就是两个batch矩阵乘法.
从官方文档可以看出
1、mm只能进行矩阵乘法,也就是输入的两个tensor维度只能是( n × m ) (n\times m)(n×m)和( m × p ) (m\times p)(m×p)
2、bmm是两个三维张量相乘, 两个输入tensor维度是( b × n × m ) (b\times n\times m)(b×n×m)和( b × m × p ) (b\times m\times p)(b×m×p), 第一维b代表batch size,输出为( b × n × p ) (b\times n \times p)(b×n×p)
3、matmul可以进行张量乘法, 输入可以是高维.
补充:torch中的几种乘法。torch.mm, torch.mul, torch.matmul
点乘都是broadcast的,可以用torch.mul(a, b)实现,也可以直接用*实现。
>>> a = torch.ones(3,4) >>> a tensor([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]) >>> b = torch.Tensor([1,2,3]).reshape((3,1)) >>> b tensor([[1.], [2.], [3.]]) >>> torch.mul(a, b) tensor([[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]])
当a, b维度不一致时,会自动填充到相同维度相点乘。
矩阵相乘有torch.mm和torch.matmul两个函数。其中前一个是针对二维矩阵,后一个是高维。当torch.mm用于大于二维时将报错。
>>> a = torch.ones(3,4) >>> b = torch.ones(4,2) >>> torch.mm(a, b) tensor([[4., 4.], [4., 4.], [4., 4.]])
>>> a = torch.ones(3,4) >>> b = torch.ones(5,4,2) >>> torch.matmul(a, b).shape torch.Size([5, 3, 2])
>>> a = torch.ones(5,4,2) >>> b = torch.ones(5,2,3) >>> torch.matmul(a, b).shape torch.Size([5, 4, 3])
>>> a = torch.ones(5,4,2) >>> b = torch.ones(5,2,3) >>> torch.matmul(b, a).shape 报错。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,下面这篇文章主要给大家介绍了关于python正则表达式常见的知识点,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
这篇文章主要介绍了关于numpy强制类型转换的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家介绍了Python实现不写硬盘上传文件的方法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
如何理解Python中if语句,语法是什么?下文的讲解详细,步骤过程清晰,对大家进一步学习和理解相关知识有一定的帮助。有这方面学习需要的朋友就继续往下看吧!
python opencv实现目标区域裁剪功能?这个任务是自己在项目中数据处理的一部分内容,待处理的图片如下所示:我需要将目标区域给裁剪出来,要不然在后期训练网络的时候整幅图像过大,且目标区域过小,得到结果不好,还会加剧计算量。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008