Pytorch实现计算平均有几种方法,怎样做
Admin 2022-07-19 群英技术资讯 1684 次浏览
在实际应用中,我们有时候会遇到“Pytorch实现计算平均有几种方法,怎样做”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“Pytorch实现计算平均有几种方法,怎样做”文章能帮助大家解决问题。给定损失函数的输入y,pred,shape均为bxc。
若设定loss_fn = torch.nn.MSELoss(reduction='mean'),最终的输出值其实是(y - pred)每个元素数字的平方之和除以(bxc),也就是在batch和特征维度上都取了平均。
loss_fn = torch.nn.MSELoss(reduction='sum') loss = loss_fn(pred, y) / pred.size(0)
补充:PyTorch中MSELoss的使用
torch.nn.MSELoss(size_average=None, reduce=None, reduction: str = 'mean')
size_average和reduce在当前版本的pytorch已经不建议使用了,只设置reduction就行了。
reduction的可选参数有:'none' 、'mean' 、'sum'
reduction='none':求所有对应位置的差的平方,返回的仍然是一个和原来形状一样的矩阵。
reduction='mean':求所有对应位置差的平方的均值,返回的是一个标量。
reduction='sum':求所有对应位置差的平方的和,返回的是一个标量。
更多可查看官方文档
首先假设有三个数据样本分别经过神经网络运算,得到三个输出与其标签分别是:
y_pre = torch.Tensor([[1, 2, 3],
[2, 1, 3],
[3, 1, 2]])
y_label = torch.Tensor([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
如果reduction='none':
criterion1 = nn.MSELoss(reduction='none') loss1 = criterion1(x, y) print(loss1)
则输出:
tensor([[0., 4., 9.],
[4., 0., 9.],
[9., 1., 1.]])
如果reduction='mean':
criterion2 = nn.MSELoss(reduction='mean') loss2 = criterion2(x, y) print(loss2)
则输出:
tensor(4.1111)
如果reduction='sum':
criterion3 = nn.MSELoss(reduction='sum') loss3 = criterion3(x, y) print(loss3)
则输出:
tensor(37.)
一般在反向传播时,都是先求loss,再使用loss.backward()求loss对每个参数 w_ij和b的偏导数(也可以理解为梯度)。
这里要注意的是,只有标量才能执行backward()函数,因此在反向传播中reduction不能设为'none'。
但具体设置为'sum'还是'mean'都是可以的。
若设置为'sum',则有Loss=loss_1+loss_2+loss_3,表示总的Loss由每个实例的loss_i构成,在通过Loss求梯度时,将每个loss_i的梯度也都考虑进去了。
若设置为'mean',则相比'sum'相当于Loss变成了Loss*(1/i),这在参数更新时影响不大,因为有学习率a的存在。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文将给大家介绍一个第三方库-Tenacity(标题中的重试机制并并不准确,它不是 Python 的内置模块,因此并不能称之为机制),它实现了几乎我们可以使用到的所有重试场景,快跟随小编一起学习一下吧
这篇文章介绍了Python使用pyecharts控件绘制图表的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
本文主要介绍python调用api的方法。有时我们需要调用api中的接口,一些人不是很了解具体的调用方法,下文就给大家分享使用python中的requests库api的实例,感兴趣的朋友往下看。
这篇文章给大家分享的是有关Python数据爬取的内容。下文有具体实例和方法,小编觉得挺实用的,因此分享给大家做个参考,接下来一起跟随小编看看吧。
这篇文章主要为大家介绍了python人工智能遗传算法示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008