用Python如何求斐波那契数列,用到什么算法
Admin 2022-07-18 群英技术资讯 574 次浏览
斐波那契数列
首先我们来定义一下斐波那契数列:
即数列的第0项:
递归计算的节点个数是O(2ⁿ)的级别的,效率很低,存在大量的重复计算。
比如:
f(10) = f(9) + f(8)
f(9) = f(8) + f(7) 重复 8
f(8) = f(7) + f(6) 重复 7
时间复杂度是O(2ⁿ),极慢
def F1(n): if n <= 1: return max(n, 0) # 前两项 return F1(n-1)+F1(n-2) # 递归
开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。但由于是递归计算,递归层数太多会爆栈。
res = [None]*100000 def F2(n): if n <= 1: return max(n, 0) if res[n]: return res[n] # 如果已存在则直接查找返回结果 res[n] = F2(n-1)+F2(n-2) # 不存在则计算 return res[n]
开一个大数组,记录每个数的值。用循环递推计算。
总共计算 n 个状态,所以时间复杂度是 O(n)。但需要开一个长度是 n 的数组,内存将成为瓶颈。
def F3(n): if n <= 1: return max(n, 0) res = [0, 1] for i in range(2,n+1): res.append(res[i-1]+res[i-2]) return res[n]
比较优秀的一种解法。仔细观察我们会发现,递推时我们只需要记录前两项的值即可,没有必要记录所有值,所以我们可以用滚动变量递推。
时间复杂度还是 O(n),但空间复杂度变成了O(1)。
def F4(n): if n <= 1: return max(n, 0) fn, f0, f1 = 0, 1, 0 # fn为最终结果,f0为第0项,f1为第一项, for i in range(2, n+1): fn = f0 + f1 # 前两项和 f0, f1 = f1, fn # 递推变量 return fn
利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。
先说通式:
利用数学归纳法证明:
这里的a0,a1,a2是对应斐波那契的第几项
证毕。
所以我们想要的得到An,只需要求得Aⁿ,然后取第一行第二个元素即可。
如果只是简单的从0开始循环求n次方,时间复杂度仍然是O(n),并不比前面的快。我们可以考虑乘方的如下性质,即快速幂:
这样只需要 logn 次运算即可得到结果,时间复杂度为 O(logn)
def mul(a, b): # 首先定义二阶矩阵乘法运算 c = [[0, 0], [0, 0]] # 定义一个空的二阶矩阵,存储结果 for i in range(2): # row for j in range(2): # col for k in range(2): # 新二阶矩阵的值计算 c[i][j] += a[i][k] * b[k][j] return c def F5(n): if n <= 1: return max(n, 0) res = [[1, 0], [0, 1]] # 单位矩阵,等价于1 A = [[1, 1], [1, 0]] # A矩阵 while n: if n & 1: res = mul(res, A) # 如果n是奇数,或者直到n=1停止条件 A = mul(A, A) # 快速幂 n >>= 1 # 整除2,向下取整 return res[0][1]
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本篇文章给大家带来了关于Python3的相关知识,numpy里有一个非常神奇的函数叫做np.where()函数,下面这篇文章主要给大家介绍了关于Pythonnp.where()的详解以及代码应用的相
subprocess 模块允许我们启动一个新进程,并连接到它们的输入/输出/错误管道,从而获取返回值。
这篇文章主要介绍了pytorch中的nn.Sequential(*net[3: 5])是啥意思,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
python循环的分类、语句及简单的应用是怎样的?在Python中,循环分为while和for两种,最终实现效果相同。下文的讲解详细,步骤过程清晰,对大家进一步学习和理解相关知识有一定的帮助。有这方面学习需要的朋友就继续往下看吧!
当因为语法需要但不希望执行任何命令或代码时,则可以使用pass语句。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008