TensorFlow物体检测如何实现,操作及过程是什么
Admin 2022-07-16 群英技术资讯 633 次浏览
Google发布了新的TensorFlow物体检测API,包含了预训练模型,一个发布模型的jupyter notebook,一些可用于使用自己数据集对模型进行重新训练的有用脚本。
使用该API可以快速的构建一些图片中物体检测的应用。这里我们一步一步来看如何使用预训练模型来检测图像中的物体。
首先我们载入一些会使用的库
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image
接下来进行环境设置
%matplotlib inline sys.path.append("..")
物体检测载入
from utils import label_map_util from utils import visualization_utils as vis_util
准备模型
变量 任何使用export_inference_graph.py工具输出的模型可以在这里载入,只需简单改变PATH_TO_CKPT指向一个新的.pb文件。这里我们使用“移动网SSD”模型。
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017' MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90
下载模型
opener = urllib.request.URLopener() opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) 将(frozen)TensorFlow模型载入内存 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='')
载入标签图
标签图将索引映射到类名称,当我们的卷积预测5时,我们知道它对应飞机。这里我们使用内置函数,但是任何返回将整数映射到恰当字符标签的字典都适用。
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories)
辅助代码
def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8)
检测
PATH_TO_TEST_IMAGES_DIR = 'test_images' TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] IMAGE_SIZE = (12, 8) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) # 这个array在之后会被用来准备为图片加上框和标签 image_np = load_image_into_numpy_array(image) # 扩展维度,应为模型期待: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # 每个框代表一个物体被侦测到. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # 每个分值代表侦测到物体的可信度. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # 执行侦测任务. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # 图形化. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np)
在载入模型部分可以尝试不同的侦测模型以比较速度和准确度,将你想侦测的图片放入TEST_IMAGE_PATHS中运行即可。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章介绍了Python网络编程之HTTP客户端模块urllib与urllib3,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
在日常的python编程中使用这几个函数来简化我们的编程工作,经常使用能使编程效率大大地提高。本文为大家总结了六个Python编程最受用的内置函数,感兴趣的可以了解一下
默认作用域前段时间学了下Lua,发现Lua的默认作用域和Python是相反的。Lua定义变量时默认变量的作用域是全局(global,这样说不是很准确,L
这篇文章主要介绍了python 基础绘图之关于随时间序列变动的图的画法,首先大家要明白画图需要考虑的问题,如何在图中适当的显示轴标签的样式和数量,详细代码跟随小编一起看看吧
Python文件路径乱码的解决方法是怎么,代码怎么写
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008