TensorFlow物体检测如何实现,操作及过程是什么
Admin 2022-07-16 群英技术资讯 1056 次浏览
很多朋友都对“TensorFlow物体检测如何实现,操作及过程是什么”的内容比较感兴趣,对此小编整理了相关的知识分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获,那么感兴趣的朋友就继续往下看吧!Google发布了新的TensorFlow物体检测API,包含了预训练模型,一个发布模型的jupyter notebook,一些可用于使用自己数据集对模型进行重新训练的有用脚本。
使用该API可以快速的构建一些图片中物体检测的应用。这里我们一步一步来看如何使用预训练模型来检测图像中的物体。
首先我们载入一些会使用的库
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image
接下来进行环境设置
%matplotlib inline
sys.path.append("..")
物体检测载入
from utils import label_map_util from utils import visualization_utils as vis_util
准备模型
变量 任何使用export_inference_graph.py工具输出的模型可以在这里载入,只需简单改变PATH_TO_CKPT指向一个新的.pb文件。这里我们使用“移动网SSD”模型。
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
下载模型
opener = urllib.request.URLopener() opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) 将(frozen)TensorFlow模型载入内存 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='')
载入标签图
标签图将索引映射到类名称,当我们的卷积预测5时,我们知道它对应飞机。这里我们使用内置函数,但是任何返回将整数映射到恰当字符标签的字典都适用。
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories)
辅助代码
def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8)
检测
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# 这个array在之后会被用来准备为图片加上框和标签
image_np = load_image_into_numpy_array(image)
# 扩展维度,应为模型期待: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# 每个框代表一个物体被侦测到.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# 每个分值代表侦测到物体的可信度.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# 执行侦测任务.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# 图形化.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
在载入模型部分可以尝试不同的侦测模型以比较速度和准确度,将你想侦测的图片放入TEST_IMAGE_PATHS中运行即可。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
主动模式:客户端首先从任意的非特殊端口n(大于1023的端口,也是客户端的命令端口)连接FTP服务器的命令端口(默认是21),向服务器发出命令 PORT n+1,告诉服务器自己使用n+1端口作为数据端口进行数据传输,然后在n+1端口监听。
这周五就是520,大家都准备好送给女朋友的礼物了吗?快来利用Python编写个表白代码送给她吧!文中示例代码讲解详细,跟随小编一起动手试一试吧
python集合怎样理解?集合是python中很基础的一个内容,这篇文章主要给大家分享的是集合的基本信息和集合的基本操作,有这方面学习需要的朋友可以参考。
python 有str object 和 unicode object 两种字符串, 都可以存放字符的字节编码,但是他们是不同的type,这一点很重要,也是为什么
内容介绍LeNet网络训练结果泛化能力测试LeNet网络LeNet网络过卷积层时候保持分辨率不变,过池化层时候分辨率变小。实现如下fromPILimportImageimportcv2impo
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008