Tensor的常见操作有哪些,具体用法是怎样的
Admin 2022-07-06 群英技术资讯 855 次浏览
在实际应用中,我们有时候会遇到“Tensor的常见操作有哪些,具体用法是怎样的”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“Tensor的常见操作有哪些,具体用法是怎样的”文章能帮助大家解决问题。Tensors are similar to NumPy's ndaeeays,不同的是可以在GPU上使用和加速计算。
导入包
from __future__ import print_function import torch
x = torch.empty(5,3) print(x)
out
tensor([[ 1.4395e-36, 4.5848e-41, 1.4395e-36],
[ 4.5848e-41, 1.4395e-36, 4.5848e-41],
[ 1.4395e-36, 4.5848e-41, 2.8026e-45],
[-1.9501e+00, 8.5165e+23, 0.0000e+00],
[ 2.5223e-43, 0.0000e+00, 0.0000e+00]])
x = torch.rand(5,3) print(x)
out
tensor([[ 0.8074, 0.9175, 0.8109],
[ 0.3313, 0.5902, 0.9179],
[ 0.6562, 0.3283, 0.9798],
[ 0.8218, 0.0817, 0.4454],
[ 0.5934, 0.0040, 0.3411]])
... x = torch.zeros(5,3,dtype = torch.long) print(x) ...
out
tensor([[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]])
x = torch.tensor([5.5,3]) print(x)
out
tensor([ 5.5000, 3.0000])
在原有tnesor的基础上形成新的tensor,会继承原有tensor的shapee和dtype等属性,当然我么也可以修改这些属性
x = x.new_ones(5,3,dtype = torch.double) print(x) x = torch.randn_like(x,dype = torch.float) print(x)
out
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=torch.float64)
tensor([[-0.0730, -0.0716, -0.8259],
[-1.7004, 0.8790, -0.0659],
[-0.8969, 0.8736, -0.6035],
[-0.1539, -2.9178, -0.7456],
[-0.0245, 0.4075, 1.4904]])
print(x.size())
out
torch.Size([5, 3])
torch.size是一个元组,支持所有元组(tuple)的操作
方法一L
print(x+y)
方法二
print(torch.add(x,y))
方法三:输出给额外的tensor
result = torch.empty(5,3) torch.add(x,y ,out= result) print (result)
方法四:原地替换-结果存放在y中
print(y)
所有原地替换tensor的操作都有后缀,比如x.copy(y),会改变x
print(x[:1]
out
tensor([-0.0716, 0.8790, 0.8736, -2.9178, 0.4075])
x = torch.randn(4,4) y = x.view(16) z = x.view(-1,8) # the size -1 is inferred from other dimensions print (x.size(),y.xize(),z.size())
out
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
x = torch.rnadn(1) print(x) print(x.item())
a = torch.ones(5) print (a)
out
tensor([ 1., 1., 1., 1., 1.])
并且改变tensor的值会同时改变numpy的值
a.add_(1) print(a) print(b)
out
tensor([ 2., 2., 2., 2., 2.]) [ 2. 2. 2. 2. 2.]
import numpy as np a = np.ones(5) b = torch.from_numpy(a) np.add(a,1,out = a ) print(a) print(b)
out
[ 2. 2. 2. 2. 2.] tensor([ 2., 2., 2., 2., 2.], dtype=torch.float64)
所有在cpu上的tensor都支持numpy转化,除了char形的tensor
Tensors 可以被移动到其他设备使用.to的方法
... if torch.cuda.is_avaulable(): device = torch.device(“cuda”) y = torch.ones_like(x,device = devcie) x= x.to(device) z = x+y print(z) print(z.to(“cpu”,torch.double)) ...
out
tensor([-1.0620], device='cuda:0') tensor([-1.0620], dtype=torch.float64)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于CPython的相关问题,CPython的垃圾收集器是Python内置的为了解决循环引用问题的方法,下面一起来看一下,希望对大家有帮助。
这篇文章主要介绍了python常见模块与用法,文中有非常详细的代码示例,对正在学习python的小伙伴们有一定的帮助,需要的朋友可以参考下
这篇文章给大家分享的是关于Python中list之间的传值,下文是小编遇到的两个list之间的传值问题,由于改代码因为这个问题卡了半个小时特此记录,希望本文能对大家有启示和帮助,接下来就跟随小编一起来看看吧。
这篇文章主要介绍了TensorFlow中关于tf.app.flags命令行参数解析模块,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
内容介绍函数的返回值函数的参数不可变参数和可变参数+=函数的参数缺省参数多值参数元组和字典的拆包总结函数的返回值一个函数执行后可以返回多个返回值defmeasure():print('测量开
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008