Pytorch框架怎样实现病虫害图像分类,代码是什么
Admin 2022-07-05 群英技术资讯 893 次浏览
这篇文章主要介绍“Pytorch框架怎样实现病虫害图像分类,代码是什么”,有一些人在Pytorch框架怎样实现病虫害图像分类,代码是什么的问题上存在疑惑,接下来小编就给大家来介绍一下相关的内容,希望对大家解答有帮助,有这个方面学习需要的朋友就继续往下看吧。PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。
2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch。它是一个基于Python的可续计算包,提供两个高级功能:
1、具有强大的GPU加速的张量计算(如NumPy)。
2、包含自动求导系统的深度神经网络。
两者之间区别很多,在本篇博客中只简单描述一部分。以图片的形式展现。
前者为机器学习的过程。
后者为深度学习的过程。


本次实验使用的是coco数据集中的植物病虫害数据集。分为训练文件Traindata和测试文件TestData.,
TrainData有9种分类,每一种分类有100张图片。
TestData有9中分类,每一种分类有10张图片。
在我下一篇博客中将数据集开源。
下面是我的数据集截图:

import torch from torch.utils.data import Dataset, DataLoader import numpy as np import matplotlib import os import cv2 from PIL import Image import torchvision.transforms as transforms import torch.optim as optim from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from Test.CNN import Net import json from Test.train_data import Mydataset,pad_image
# 构建神经网络
class Net(nn.Module):#定义网络模块
def __init__(self):
super(Net, self).__init__()
# 卷积,该图片有3层,6个特征,长宽均为5*5的像素点,每隔1步跳一下
self.conv1 = nn.Conv2d(3, 6, 5)
#//(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
self.pool = nn.MaxPool2d(2, 2)#最大池化
#//(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
self.conv2 = nn.Conv2d(6, 16, 5)#卷积
#//(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
self.fc1 = nn.Linear(16*77*77, 120)#全连接层,图片的维度为16,
#(fc1): Linear(in_features=94864, out_features=120, bias=True)
self.fc2 = nn.Linear(120, 84)#全连接层,输入120个特征输出84个特征
self.fc3 = nn.Linear(84, 7)#全连接层,输入84个特征输出7个特征
def forward(self, x):
print("x.shape1: ", x.shape)
x = self.pool(F.relu(self.conv1(x)))
print("x.shape2: ", x.shape)
x = self.pool(F.relu(self.conv2(x)))
print("x.shape3: ", x.shape)
x = x.view(-1, 16*77*77)
print("x.shape4: ", x.shape)
x = F.relu(self.fc1(x))
print("x.shape5: ", x.shape)
x = F.relu(self.fc2(x))
print("x.shape6: ", x.shape)
x = self.fc3(x)
print("x.shape7: ", x.shape)
return x
img_path = "TestData/test_data/1/Apple2 (1).jpg" #使用相对路径
image = Image.open(img_path).convert('RGB')
image_pad = pad_image(image, (320, 320))
input = transform(image_pad).to(device).unsqueeze(0)
output = F.softmax(net(input), 1)
_, predicted = torch.max(output, 1)
score = float(output[0][predicted]*100)
print(class_map[predicted], " ", str(score)+" %")
plt.imshow(image_pad) # 显示图片



这次搭建的网络是基于深度学习框架Lenet,并自己做了一些修改完成。最终的训练的结果LOSS接近0,ACC接近100%。但是一般的识别率不会达到这么高,该模型可能会过拟合。可采取剪枝等操作减小过拟合。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python可视化神器pyecharts之绘制地理图表,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
python实现函数重载有什么方法?在python中,我们想要实现函数重载,可以利用装饰器。接下来就给大家分享一下python实现函数重载的过程及操作,感兴趣的朋友可以参考,对于python实现函数重载,下文有很详细的介绍。
这篇文章主要介绍了Python中tkinter的用户登录管理的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要为大家介绍了Python常用的内置函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
contour和contourf都是画三维等高线图的,下面这篇文章主要给大家介绍了关于python作图基础操作之plt.contour的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008