用Python如何爬取疫情数据,并进行数据可视化操作
Admin 2022-07-04 群英技术资讯 1262 次浏览
这篇文章主要讲解了“用Python如何爬取疫情数据,并进行数据可视化操作”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“用Python如何爬取疫情数据,并进行数据可视化操作”吧!python 3.8 比较稳定版本 解释器发行版 anaconda jupyter notebook 里面写数据分析代码 专业性
pycharm 专业代码编辑器 按照年份与月份划分版本的
import requests # 发送网络请求模块 import json import pprint # 格式化输出模块 import pandas as pd # 数据分析当中一个非常重要的模块
先找到今天要爬取的目标数据
https://news.qq.com/zt2020/page/feiyan.htm#/

找到数据所在url


url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&_=1638361138568' response = requests.get(url, verify=False)
json_data = response.json()['data']
json_data = json.loads(json_data)
china_data = json_data['areaTree'][0]['children'] # 列表
data_set = []
for i in china_data:
data_dict = {}
# 地区名称
data_dict['province'] = i['name']
# 新增确认
data_dict['nowConfirm'] = i['total']['nowConfirm']
# 死亡人数
data_dict['dead'] = i['total']['dead']
# 治愈人数
data_dict['heal'] = i['total']['heal']
# 死亡率
data_dict['deadRate'] = i['total']['deadRate']
# 治愈率
data_dict['healRate'] = i['total']['healRate']
data_set.append(data_dict)
df = pd.DataFrame(data_set)
df.to_csv('data.csv')

from pyecharts import options as opts from pyecharts.charts import Bar,Line,Pie,Map,Grid
df2 = df.sort_values(by=['nowConfirm'],ascending=False)[:9] df2

line = (
Line()
.add_xaxis(list(df['province'].values))
.add_yaxis("治愈率", df['healRate'].values.tolist())
.add_yaxis("死亡率", df['deadRate'].values.tolist())
.set_global_opts(
title_opts=opts.TitleOpts(title="死亡率与治愈率"),
)
)
line.render_notebook()

bar = (
Bar()
.add_xaxis(list(df['province'].values)[:6])
.add_yaxis("死亡", df['dead'].values.tolist()[:6])
.add_yaxis("治愈", df['heal'].values.tolist()[:6])
.set_global_opts(
title_opts=opts.TitleOpts(title="各地区确诊人数与死亡人数情况"),
datazoom_opts=[opts.DataZoomOpts()],
)
)
bar.render_notebook()

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要给大家介绍了关于利用python如何删除同一文件夹下相似的图片的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了教你怎么用Python实现自动生日祝福,文中有非常详细的代码示例,对正在学习python的小伙伴们有很好地帮助,需要的朋友可以参考下
匹配文本并在其上一行追加文本问题描述对比遇到的坑用正则表达式匹配文本(Python经典编程案例)匹配文本并在其上一行追加文本问题描述Python匹配文本并在其上一行追加文
题目:统计字符串中,各个字符的个数。比如:"hello world" 字符串统计的结果为: h:1 e:1 l:3 o:2 d:1 r:1 w:1
本文主要介绍了Django多app路由分发,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下<BR>
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008