TensorFlow进行反向传播求导的具体过程操作是什么
Admin 2022-06-30 群英技术资讯 513 次浏览
X=tf.constant([-1,-2],dtype=tf.float32) w=tf.Variable([2.,3.]) truth=[3.,3.] Y=w*X # cost=tf.reduce_sum(tf.reduce_sum(Y*truth)/(tf.sqrt(tf.reduce_sum(tf.square(Y)))*tf.sqrt(tf.reduce_sum(tf.square(truth))))) cost=Y[1]*Y optimizer = tf.train.GradientDescentOptimizer(1).minimize(cost) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(Y)) print(sess.run(w)) print(sess.run(cost)) print(sess.run(Y)) sess.run(optimizer) print(sess.run(w))
结果如下
W由[2,3]变成[-4,-25]
f=y0*y=w0*x0*w*x=[w1*x1*w0*x0,w1*x1*w1*x1,]
f对w0求导,得w1*x0*x1+0=6 ,所以新的w0=w0-6=-4
f对w1求导,得 w0*x0*x1+2*w1*x1*x1=28,所以新的w1=w1-28=-25
补充:【TensorFlow篇】--反向传播
反向自动求导是 TensorFlow 实现的方案,首先,它执行图的前向阶段,从输入到输出,去计算节点
值,然后是反向阶段,从输出到输入去计算所有的偏导。
图是第二个阶段,在第一个阶段中,从 x =3和 y =4开始去计算所有的节点值
f ( x / y )=x 2 * y + y + 2
求解的想法是逐渐的从图上往下,计算 f ( x , y )的偏导,使用每一个连续的节点,直到我们到达变量节
点,严重依赖链式求导法则!
因为n7是输出节点,所以f=n7,所以????f/????????7= 1
让我们继续往下走到n5节点,????f/????????5=????f/????????7∗????????7/????????5 . 我们已知????f/????????7=1,所以我们需要知道????????7/????????5 ,因为n7=n5+n6,所以我们求得????????7/????????5=1,所以????f/????????5=1*1=1
现在我们继续走到节点n4,????f/????????4=????f/????????5∗????????5/????????4,因为n5=n4*n2,我们求得�????5/????????4=n2,????f/????????4=1*4
沿着图一路向下,我们可以计算出所有节点,就能计算出 ????????/????x= 24,????????/????y= 10
那我们就可以利用和上面类似的方式方法去计算????????/????????
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
断言就是世界结果与期望结果去对比,符合预期的测试就是pass,不符合预期的测试就是failed,下面这篇文章主要给大家介绍了关于python生产环境禁用assert断言的相关资料,需要的朋友可以参考下
Python3 os模块提供了非常丰富的方法用来处理文件和目录。常用的方法如下表所示:
这篇文章给大家分享的是有关Python全局变量global关键字的内容。一些朋友对于函数内使用全局变量的问题不是很清楚,因此因此分享给大家做个参考,感兴趣的朋友就跟随小编看看吧。
这篇文章主要介绍了Python解决爬虫程序卡死问题,文章围绕主题展开详细内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
这篇文章主要介绍了Pytorch使用transforms,tansforms功能,通俗地讲,类似于在计算机视觉流程里的图像预处理部分的数据增强。下面来看看文章的具体内容介绍吧,需要的朋友可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008