TensorFlow进行反向传播求导的具体过程操作是什么
Admin 2022-06-30 群英技术资讯 836 次浏览
在实际应用中,我们有时候会遇到“TensorFlow进行反向传播求导的具体过程操作是什么”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“TensorFlow进行反向传播求导的具体过程操作是什么”文章能帮助大家解决问题。X=tf.constant([-1,-2],dtype=tf.float32)
w=tf.Variable([2.,3.])
truth=[3.,3.]
Y=w*X
# cost=tf.reduce_sum(tf.reduce_sum(Y*truth)/(tf.sqrt(tf.reduce_sum(tf.square(Y)))*tf.sqrt(tf.reduce_sum(tf.square(truth)))))
cost=Y[1]*Y
optimizer = tf.train.GradientDescentOptimizer(1).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(Y))
print(sess.run(w))
print(sess.run(cost))
print(sess.run(Y))
sess.run(optimizer)
print(sess.run(w))
结果如下

W由[2,3]变成[-4,-25]
f=y0*y=w0*x0*w*x=[w1*x1*w0*x0,w1*x1*w1*x1,]
f对w0求导,得w1*x0*x1+0=6 ,所以新的w0=w0-6=-4
f对w1求导,得 w0*x0*x1+2*w1*x1*x1=28,所以新的w1=w1-28=-25
补充:【TensorFlow篇】--反向传播
反向自动求导是 TensorFlow 实现的方案,首先,它执行图的前向阶段,从输入到输出,去计算节点
值,然后是反向阶段,从输出到输入去计算所有的偏导。

图是第二个阶段,在第一个阶段中,从 x =3和 y =4开始去计算所有的节点值
f ( x / y )=x 2 * y + y + 2
求解的想法是逐渐的从图上往下,计算 f ( x , y )的偏导,使用每一个连续的节点,直到我们到达变量节
点,严重依赖链式求导法则!
因为n7是输出节点,所以f=n7,所以????f/????????7= 1
让我们继续往下走到n5节点,????f/????????5=????f/????????7∗????????7/????????5 . 我们已知????f/????????7=1,所以我们需要知道????????7/????????5 ,因为n7=n5+n6,所以我们求得????????7/????????5=1,所以????f/????????5=1*1=1
现在我们继续走到节点n4,????f/????????4=????f/????????5∗????????5/????????4,因为n5=n4*n2,我们求得�????5/????????4=n2,????f/????????4=1*4
沿着图一路向下,我们可以计算出所有节点,就能计算出 ????????/????x= 24,????????/????y= 10
那我们就可以利用和上面类似的方式方法去计算????????/????????
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍一、序言二、配置环境二、鼠标控制1、获取鼠标位置函数以及测试源码2、控制鼠标左击/右击/双击函数以及测试源码3、控制鼠标移动/拖动4、控制鼠标滚轮滚动总结一、序言使用python控制按键无疑非
二叉树是一种简单的树形结构,其每个节点的分支节点数有0,1或2个,下面这篇文章主要给大家介绍了关于Python二叉树的相关资料,本文介绍的非常通俗易懂,新手也秒懂,需要的朋友可以参考下
在本篇文章里小编给大家整理的是一篇关于python引入其他文件夹下的py文件具体方法,有兴趣朋友们可以跟着学习参考下。
支持向量机 (Support Vector Machine, SVM) 是一种监督学习技术,它通过根据指定的类对训练数据进行最佳分离,从而在高维空间中构建一个或一组超平面。本文将介绍通过SVM算法实现手写数字的识别,需要的可以了解一下
这篇文章主要为大家详细介绍了使用python实现简单去水印功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 ICP核准(ICP备案)粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008