Python实现二终端可靠度怎么做,方法是什么
Admin 2022-06-27 群英技术资讯 805 次浏览
这篇文章主要介绍了Python实现二终端可靠度怎么做,方法是什么相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python实现二终端可靠度怎么做,方法是什么文章都会有所收获,下面我们一起来看看吧。在网络可靠性中,一种较为经典且在实践中更为常用的可靠度计算便是二终端可靠度,即给定网络拓扑结构与边可靠度(假定节点完全可靠),计算网络中指定的两个节点之间的连通可靠度。
在此,笔者依据最小路集思想给出此方法的python代码实现,该代码可以依据给定的输入矩阵、节点序号等设定值算出两节点间的连通可靠度。
逻辑代码与测试用例如下:
import itertools
def min_path_sets(init_matrix,index_start,index_end):
import re
num_point = init_matrix.shape[0]
min_path_list = []
for i in range(num_point-1):
temp = init_matrix**(i+1)
item = expand(temp[index_start-1,index_end-1])
list_given = re.sub('[ *123456789]',"",str(item)).split("+")
#删除指定阶数下,路径长度不等于阶数的路
index_to_delete = []
for j in range(len(list_given)):
if len(list_given[j])!=(i+1) or list_given[j]=='0':
index_to_delete.append(j)
for counter, index in enumerate(index_to_delete):
index = index - counter
list_given.pop(index)
min_path_list.extend(list_given)
return min_path_list
def str_de_duplication(pstr):
a = ''
for i in range(len(pstr)):
if pstr[i] not in a:
a+=pstr[i]
return a
def product_symbol(pstr,my_dict):
import numpy as np
value_list = []
for i in pstr:
value_list.append(my_dict[i])
return np.prod(value_list)
def generate_label(path_sets,my_dict):
import numpy as np
all_result = []
for exp_num in range(len(path_sets)):
item_Combination = list(itertools.combinations(path_sets, exp_num+1))
item_list = list(map(lambda x: str_de_duplication("".join(x)),item_Combination))
value_list = list(map(lambda x: product_symbol(x,my_dict),item_list))
all_result.append(np.sum(value_list)*(-1)**(exp_num))
return np.sum(all_result)
def Matrix_label(init_matrix,my_dict,index_start,index_end):
path_sets = min_path_sets(init_matrix,index_start,index_end)
pro_value = generate_label(path_sets,my_dict)
return pro_value
from sympy import *
from sympy.abc import A,B,C,D,E,F
index_start = 2
index_end = 1
data = Matrix([[0,A,B],
[A,0,C],
[B,C,0]])
my_dict = {'A':0.8,
'B':0.9,
'C':0.9}
Matrix_label(data,my_dict,index_start,index_end)
在前部分,主要定义了几个函数以便求出最小路集以及利用容斥原理计算二终端可靠度,最终外层函数为Matrix_label(data,my_dict,index_start,index_end):
参数解释:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
pytorch是一个python优先的深度学习框架,用于自然语言应用程序。这篇文章主要介绍pytorch中的numel函数如何使用的内容,下文有numel函数用法实例,感兴趣的朋友可以参考,接下来小编带着大家一起了解看看。
批量解压缩带密码的压缩包的Python脚本,直接拖入文件夹或压缩文件即可,支持解压几乎所有压缩文件格式。
递归的概念很简单,如果函数包含了对其自身的调用,该函数就是递归的。递归(Recursion),在数学与计算机科学中,是指在函数的定义中使用
大家好,本篇文章主要讲的是python配置虚拟环境步骤,感兴趣的同学赶快来看一看,对你有帮助的话记得收藏一下,方便下次浏览
在python,还有一个写入文件的方法,那就是和它长得很像的writeline函数。这两者具体如何使用,有什么区别吗?本文小编从参数、格式、用法和具体使用向大家介绍python中write和writelines的区别。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008