MySQL数据库中多层索引怎样创建和操作
Admin 2022-06-21 群英技术资讯 1106 次浏览
这篇文章主要介绍“MySQL数据库中多层索引怎样创建和操作”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MySQL数据库中多层索引怎样创建和操作”文章能帮助大家解决问题。环境:Jupyter
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
display(a)

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
a.columns.names=['大类','小类']
display(a)

import numpy as np
import pandas as pd
index=pd.MultiIndex.from_arrays([['上半年','上半年','下半年','下半年'],['一季度','二季度','三季度','四季度']])
columns=pd.MultiIndex.from_tuples([('蔬菜','胡萝卜'),('蔬菜','白菜'),('肉类','牛肉'),('肉类','猪肉')])
a=pd.DataFrame(np.random.random(size=(4,4)),index=index,columns=columns)
display(a)

from_product() 局限性较大
import pandas as pd index = pd.MultiIndex.from_product([['上半年','下半年'],['蔬菜','肉类']]) a=pd.DataFrame(np.random.random(size=(4,4)),index=index) display(a)

import pandas as pd
a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.loc['a'])
print('---------------------')
print(a.loc['a','c'])

import pandas as pd
a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.iloc[0])
print('---------------------')
print(a.loc['a':'b'])
print('---------------------')
print(a.iloc[0:2])

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
print(a)
print('--------------------')
print(a.loc['上半年','二季度'])
print('--------------------')
print(a.iloc[0])

swaplevel( )
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.swaplevel('年度','季度'))

sort_index( )
level:指定根据哪一层进行排序,默认为最层inplace:是否修改原数据。默认为Falseimport numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.sort_index())
print('--------------------')
print(a.sort_index(level=1))

stack( )
将指定层级的列转换成行
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
print(a.stack(0))
print('--------------------')
print(a.stack(-1))

unstack( )
将指定层级的行转换成列
fill_value:指定填充值。
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(-1))

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(0,fill_value='0'))

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了SQLServer日期函数总结案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
1、主键约束(PRIMARYKEY)主键约束可以在表中定义一个主键值,它可以唯一确定表中每一条记录,每个表中只能有一个主键约束(只能有一个主键约束的意思并不是说受主键约...
这篇文章主要介绍了MSSQL 2000 附加数据库提示“错误 823”数据恢复实操,报错823一般数据库的物理页面出现了损坏或者校验值损坏导致数据库页面无法被识别还有异常断电导致的文件系统损坏,数据库页面丢失,下面针对错误 823对数据进行恢复,需要的朋友可以参考一下
这篇文章给大家分享的是有关SQL Server分隔函数怎么用的内容。小编觉得挺实用的,因此分享给大家做个参考,接下来就跟随小编一起来学习吧。
这篇文章主要为大家介绍了SQL Server T-SQL高级查询,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
成为群英会员,开启智能安全云计算之旅
立即注册关注或联系群英网络
7x24小时售前:400-678-4567
7x24小时售后:0668-2555666
24小时QQ客服
群英微信公众号
CNNIC域名投诉举报处理平台
服务电话:010-58813000
服务邮箱:service@cnnic.cn
投诉与建议:0668-2555555
Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008