Python转灰度图像的方法是什么,具体怎么做
Admin 2022-06-09 群英技术资讯 621 次浏览
图像类型:通常我们的数字图像是彩色的3通道RGB图像,R代表红色,G代表绿色,B代表蓝色。
存储方式:通常是uint8 无符号整数,0~255,当然也有24bits 可以表示更多的颜色,虽然这样做可以提高图像对于现实世界的一个还原度,但是会增加更多的开销,因此我们通常还是用8bits
灰度图像:灰度图像在图像处理种有着非常重要的地位,一些常用的操作都会涉及到灰度图像的转换,边缘检测、二值化等这些操作之前通常都是RGB to Gray。
直接给出公式:Gray = 0.2989*R+0.5870*G+0.1140*B
#Python Opencv #导入头文件 %matplotlib inline import matplotlib.pyplot as plt import cv2 import numpy as np #读取图像,opencv读取图像通道顺序为BGR img=cv2.imread('img.path.jpg') #显示图像,其中.astype(np.uint8)为了确保数据格式以免无法显示,plt显示图像需要为RGB顺序 plt.figure(figsize=(15,10)) plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB)) plt.show()
img=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0] ###### plt.figure(figsize=(15,10)) plt.imshow(img, cmap ='gray') plt.show()
#opencv 自带函数进行转化 plt.figure(figsize=(15,10)) plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY),cmap='gray') plt.show()
img3=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0] img2=cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY) print((img3-img2).sum()/(img.shape[0]*img.shape[1])) ###结果=-0.0072855376781315
对比下,自己用公式得到的灰度图和opencv自己函数的灰度图,其实还是不一样的,应该是计算精度上的差距
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了完美解决matplotlib子图坐标轴重叠问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
Python内置函数-vars()函数。vars() 函数返回对象object的属性和属性值的字典对象。
python中return和print的区别有哪些?功能不同,return是返回计算值;print是执行能输出到屏幕的功能。
内容介绍写在前面创建一个文档先实现第一步,写入一个标题添加文字段落列表的添加图片的添加表格添加相关样式设置页眉和页脚写在前面python-docx不支持doc文档,一定要注意该点,如果使用do
这篇文章主要介绍了解决pytorch rnn 变长输入序列的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008