基本Python是如何实现图像清晰化处理的
Admin 2022-05-28 群英技术资讯 1977 次浏览
这篇文章主要介绍了基本Python是如何实现图像清晰化处理的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇基本Python是如何实现图像清晰化处理的文章都会有所收获,下面我们一起来看看吧。最近看到一个有意思的机器学习项目——GFPGAN,他可以将模糊的人脸照片恢复清晰。开源项目的Github地址:https://github.com/TencentARC/GFPGAN
我们看一看作者给出的对比图。

最右侧的就是GFPGAN的效果,看一下最左层的输入图片,可以发现GFPGAN将图片恢复的非常清晰。这个效果非常惊艳。
按照以前的惯例,我还是先把这个项目安装使用一下,看看能不能对代码重新封装,变成可以工程化的项目。
我们先看一下项目README给的提示。

首先需要的python版本是>=3.7的,所以我用Anaconda创建了一个python3.9的虚拟环境。Pytorch的安装直接从官网获取命令安装一个最新版本即可。

因为还有一些基础依赖的安装,照着安装一下就行,其实setup.py是已经在项目中的,如下图。

由于模型比较大,所以作者没有放在github上,给了下面的下载提示。该模型是作者提供已经训练好的模型。

如果下载很慢的话,可以从我的网盘下载。
链接提取码:TUAN
作者还提供了基础模型可供自行训练。

下面我准备了一些图,挑了一些比较典型的图片,有黑白的、彩色的以及马赛克的,想看看是不是都可以实现清晰化处理。
准备的图片如下:

按照README提供的指令
python inference_gfpgan.py --upscale 2 --test_path inputs/newImages --save_root results
看一下执行结果:
(pytorch39) C:\Users\yi\PycharmProjects\GFPGAN>python inference_gfpgan.py --upscale 2 --test_path inputs/newImages --save_root results
C:\Users\yi\PycharmProjects\GFPGAN\inference_gfpgan.py:45: UserWarning: The unoptimized RealESRGAN is very slow on CPU. We do not use it. If you really want to use it, p
lease modify the corresponding codes.
warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. '
Processing 331.jpg ...
E:\ProgramData\Anaconda3\envs\pytorch39\lib\site-packages\torch\nn\functional.py:3679: UserWarning: The default behavior for interpolate/upsample with float scale_factor
changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore th
e old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details.
warnings.warn(
Processing 333.jpg ...
Processing 334.jpg ...
Processing 335.jpg ...
Results are in the [results] folder.
(pytorch39) C:\Users\yi\PycharmProjects\GFPGAN>
按照默认参数,会在results结果文件夹中生成4个目录分别为前后对比图、原检测出来的脸部图、处理后的脸部图、处理后的最终图。

我们看看效果


可以看出两点:
1、马赛克不能消除,有一张全马赛克的图片,直接无法修复。
2、常规的模糊照片修复的是真的很清晰呀。
总的来说该项目是非常优秀的,从最终图片的效果上来说,非常好了,至于去除马赛克还是得看别的项目了。后面研究研究这么项目,看能不能改改。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
thon多线程实现多任务怎样做?首先,我们需要了解什么是线程、 一个程序实现多任务的方法、多线程的创建方式等等,接下来我们就一步步的了解python多线程实现多任务的方法吧。
这篇文章主要介绍了Python 多线程之threading 模块的使用,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章主要介绍了Python浮点数取整、格式化和NaN处理的操作方法,本文较详细介绍了取整的三种方法,格式化浮点数输出的示例代码详解,感兴趣的朋友跟随小编一起看看吧
众所周知Django较为适合原生开发,即通过该框架搭建一个全新的项目,通过在修改models.py来创建新的数据库表,下面这篇文章主要给大家介绍了关于django连接Mysql中已有数据库的相关资料,需要的朋友可以参考下
关键字nonlocal在Python 2 x中,闭包只能读外部函数的变量,而不能改写它。为了解决这个问题,Python 3 x引入了nonlocal关键字,在闭包内
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008